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1. Amplification scheme

One of the main advantages of plasmonic nanostructures for optoelectronics is the
possibility to use the SPP supporting metal-semiconductor interface for electrical injection.
However, it is extremely difficult to realize this concept in practice because the best metals—
gold, silver and copper, while other plasmonic materials (materials with a negative dielectric
function) introduce high absorption increasing modal losses by orders of magnitude. The
recently proposed so-called ‘alternative’ plasmonic materials [1] are good prospects for
epsilon-near-zero and negative-refractive-index metamaterials, but in the infrared they are
too lossy and cannot compete with gold and silver in deep-subwavelength plasmonic
waveguides and cavities. For example, for titanium nitride, ern=-75+ 23i at A =1.55 pm [2],
while for gold, the imaginary part of the dielectric function, which responsible for losses, is at
least twice lower: €5,=-115 + 11i [3]). In addition, the electrical conductivity of the alternative
plasmonic materials is much lower than that of silver and gold, which prevents their use as
efficient electrical contacts.

The use of metal-semiconductor Schottky contacts [4,5] is the most natural realization
of electrical pumping in plasmonic devices. This approach provides population inversion in
the immediate vicinity of the metal-semiconductor interface that is extremely important, since
plasmonic modes are highly confined to the metal surface. But such a pumping scheme is not
without its shortcomings. To the best of our knowledge, only one binary semiconductor
material (InAs) forms Schottky contacts to gold and silver with a barrier height greater than
the bandgap energy of the semiconductor [6,7], which is required for amplification [4]. This
limits the operation wavelength to around 3 pm and operation temperature to below 150 K as
consequences of the small bandgap energy and high Auger recombination in InAs,
respectively. Inability of the Schottky barrier to block majority carriers under forward bias
leads to a quite high leakage current even in a single heterostructure SPP amplifier [8] that
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makes the amplification scheme power-inefficient at small intensities of the surface plasmon
field.

Double heterostructures and multi-quantum wells could potentially solve this problem,
but it is not easy to provide a high overlap of the plasmonic mode with the active region of the
semiconductor structure [9,10]. The reason is that gold, silver and copper typically form
rectifying Schottky contacts to direct-bandgap semiconductors, while low-resistance ohmic
contacts are needed for creation of the population inversion. Common techniques of
producing Au ohmic contacts to direct-bandgap IlI-V semiconductors are based on Au alloys
(e.g. Au-Sn, Au-Be, Au-Zn, Au-Ge) or non-alloyed multilayer metallic structures such as Cr/Au,
Ni/Au, Ti/Au and Ti/Pt/Au [11]. Despite the fact that the latter was successfully used in metal-
coated nanopillar lasers [12,13], the above mentioned approaches cannot be utilized for loss
compensation in nanoscale plasmonic waveguides, where the metal-semiconductor contact is
used for SPP guiding and, therefore, the introduced high ohmic losses are highly undesirable.
This problem is no less important in integrated on-chip photon and SPP sources, which are
crucial for nanophotonic circuitry, where in-plane integrability is essential. While most of the
other configurations suitable for the implementation of electrical pumping can emit light only
perpendicular to the wafer [12-14] or demonstrate a dipolar behavior [15], emission parallel
to the wafer is easily achievable in a waveguiding geometry [16,17].

In an active SPP waveguide, the signal propagates along the metal-semiconductor
interface and a significant amount of the SPP field is concentrated in the metal, which
primarily determines modal losses. At the same time, this interface should serve as a good
ohmic contact for efficient electron or hole injection. Unfortunately, Au alloys, which form
ohmic contacts to IlI-V semiconductors, can hardly compete with gold and silver in terms of
optical losses in the infrared [18]. In addition, annealing after metal deposition drastically
changes the contact structure via group-V elements outdiffusion, Au indiffusion and chemical
reaction at the interface that seriously deteriorates the interface quality. In the second
approach, apart from Ti, Ni, Cr being very absorptive materials, non-alloyed contacts require
thick heavily doped cap semiconductor layers [9,10,19] to guarantee pure tunneling behaviour
of the metal-semiconductor contact. These layers prevent achieving high confinement of the
plasmonic mode to the active region of the semiconductor structure and introduce additional
absorption losses that are especially critical, since the SPP propagation losses at the metal-
semiconductor interface exceed 10° cm™ at telecommunication wavelengths.

The proposed amplification scheme is based on an Au/InAsP/InGaAs/AllnAs double-
heterostructure tunneling Schottky barrier diode. The lightly doped InGaAs layer sandwiched
between p*-AllnAs and n*-InAsP layers with the bandgap energies exceeding that of InGaAs
acts as an active region of the semiconductor structure. Under high forward bias, electrons
and holes are injected into InGaAs from the InAsP and AllnAs sides, respectively, while high
potential barriers for electrons at the InGaAs/AlInAs heterojunction and for holes at the
InAsP/InGaAs heterojunction confine the excess carriers to the active region. Gold deposited
on top of the electron injection n*-InAsP layer is used to form an n-type ohmic contact.
Despite the fact that the Au/n-InP Schottky barrier is as high as 0.5 eV [20], Fermi level in
Au/InAs contacts is anomalously pinned to the conduction band of InAs [6,7] and a wide range
of InAsP ternary alloys form contacts to gold with a quite small barrier height. In particular,



the height of the Au/n-InAs, 4P ¢ barrier does not exceed 0.2 eV [21,22] that combined with an
extremely small effective mass of electrons allows these carriers to tunnel freely through the
Schottky barrier even at moderate doping of INAsy4Pos (Np™"=3x10"® cm?) (see the next
section for details). The voltage drop across the contact does not exceed 7 mV even at a
current density of 50 kA/cm?, which ensures nearly ideal ohmic characteristics.

2. Ohmic contact for double-heterostructure-based metal-semiconductor
nanolasers

Plasmonic metals: silver and gold, - form rectifying Schottky contacts to most of direct-
bandgap semiconductors [24], which creates a significant problem for optoelectronic devices.
The only unique binary IlI-V semiconductor is InAs: the Fermi level at the Au/InAs interface is
above the conduction band edge of InAs and n-type InAs forms an ohmic contact to Au [22,23].
However, the bandgap energy of InAs is equal to only 0.36 eV at room temperature, therefore,
it cannot be considered as a cladding layer of the double-heterostructure optoelectronic
device. On the other hand, the bandgap energy of InP is 1.34 eV, but n-type InP forms a
Schottky contact to Au with a barrier height of about 0.5 eV. In this regard, InAs,P, alloys are
of a great interest, since it is possible to find a semiconductor material with a relatively large
bandgap energy and a small barrier height, so that Au/n*-InAs,P,. contact is ohmic (Figure S1)
due to electron tunneling through the barrier. This gives the possibility to use the In,Ga;,As
alloy lattice matched to InAs,Pq« as an active layer of the double heterostructure, while the
InAs,P,.« layer efficiently injects electrons and blocks holes because of the large valence band
discontinuity between InAs,P;., and In,Ga;.,As (Figure S1).
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Figure S1. Conduction and valence band edge energies versus a lattice constant for InAsP, InGaAs
and AllnAs ternary alloys [24]. Yellow and white circles denote the conduction and valence band
edges of the binary semiconductors, respectively.
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InAs4Po6 is @ good candidate for a cladding layer with an ohmic contact in double-
heterostructure nanoscale optoelectronic devices. The Schottky barrier height @g at the
interface between gold and InAsq 4Po¢ is as low as 0.15 - 0.2 eV [24,25], therefore electrons can



tunnel through this barrier. To calculate the tunneling and over-barrier current, we evaluate
the barrier transmission by solving the Schrédinger equation for a parabolic potential barrier
and calculate the electron flux [26]:

=P, J'dE[f(E qVv) - f(E)]fsm9|Tm%(9 E) = hkzs(@ E) : (S1)

In the above expression, g is the electron charge, V is the bias voltage, m.s is the effective
electron mass in the semiconductor, pq¢ is the density of states in the metal at the Fermi
energy, flE) is the Fermi distribution function, T, is the barrier transmission coefficient and
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where uf and mer, are the Fermi velocity and effective electron mass in the metal, respectively.
The barrier transmission coefficient can be expressed as follows [26]
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Here, U(x,y) and V(x,y) are the parabolic cylinder functions,
K., E)= 9k, E) (S4)
Km0 E)= SUfme';sme, (S5)
2
7 ZK/ 2 ! C ! (56)
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where & is the static dielectric constant of the semiconductor, Ny and N, are the donor and
acceptor concentration.
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Figure S2. Current-voltage characteristics of the Au/n*-InAsq 4Po¢ contact for different metal-
semiconductor barrier heights @g, T=300 K, Np-Na = 3x10"® cm™, ur =1.4x10% cm/s, Mes = 0.057meo
[27], Mem = Meo, Where meg is the free-electron mass. Insert: Schematic illustration of the Schottky

barrier. At room temperature, the barrier width is equal to 13 nm.

Calculations show that the Au/n*-InAsy4Pos contact exhibits a perfect ohmic behavior
even in the case of a significantly high barrier height (¢s =0.15-0.2 eV) (Figure S2), the
specific contact resistance does not exceed 1.3x10”7 Q cm? and does not change appreciably
with the temperature. This provides ideal conditions for the design of coherent light and SPP
sources operating at moderate and high current densities, since the voltage drop across the
Au/n*-InAsg 4P contact is less than 7 mV even at a current density of 50 kA/cm?. It should be
emphasized that such a small resistance is achieved with a moderate donor concentration of
3x10'® cm™. In comparison, InP with the same donor concentration forms a rectifying contact
to gold (Figure S3).
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Figure S3. Current-voltage characteristics of the Au/n*-InP at room temperature, Np-
Na = 3x10"® cm™, mes = 0.079me [271.



3. Mode structure and spectral properties of the SPP nanolaser.

3.1. Calculation of the dielectric function of compound semiconductors

Relative permittivity of the medium containing a mixture of molecules of /" type, can
be linked to their polarizabilities «; and densities N, through the Clausius-Mossotti relation
[28]

e-1 1

->Y N, (57)
8+2 3 i

Similar expressions are derived for each of the permittivities of the uniform individual
components:
g&-1 1

== Na,, (S8)
&+2 3

where N =ZNi . Combining the above equations, one can express the permittivity of the

compound thorough the permittivities of the components:
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where 77, = N, /N is the relative density fractions of the /™" component. In the case of a binary

compound A B, ,C equation (S9) is transformed into
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This equation is used to calculate the dielectric functions of all involved compound
semiconductors, e.g. for Ing72Gag:sAs X =0.72, €pc = Epps ANA Egc = Eguns - The dielectric

constants for GaAs, InAs, InP as well as their spectral dispersion are derived from the
experimental data reported in Ref. [29], while Ref. [30] is used for AlAs.

It should be noted that the dielectric function of the semiconductor changes noticeably
as temperature decreases down to the cryogenic level. In order to take into account this
phenomenon in the calculations, we employ an empirical model elaborated in Ref. [31], which
gives the following expression for the temperature dependence of the relative permittivity:

A 2
g(a),T)=1+{Eg(T)+ B(w’T)] : (S11)



Here, Eg(T) is the bandgap energy of the semiconductor, A=13.6eV and
B(w,T)=B, + Bw+B,T, with B,=2.5x10°eV/K [31,32]. Introducing in the equation the
bandgap energies of the semiconductors at the temperatures of interest (Table S1) and
deriving the only unknown coefficients By and B, by fitting the spectral dependence of the

relative permittivity at room temperature (equation (S10)), the spectral dependences of the
involved compound semiconductors are calculated at 77, 150 and 300 K.

Table S1. Values of the bandgap energies used in the calculations of INASg40Po60, IN072Gap28AS
and Alp29lng71As [27] and temperature dependences of the semiconductor permittivities.
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3.2. Calculation of the dielectric function of gold

Dielectric function of gold is calculated in the infrared employing the Drude model
Epy (@) =1- @7 [[0° +IT(T Jw], where @, =1.37x10* s is the plasma frequency, which is
practically temperature-independent, and F(T)zyp(T)+ye(T,a))+;/g(T)+yS(T) is the

temperature-dependent damping frequency, which consists of several terms, representing
electron-phonon y,(T), electron-electron 7,(T,w), grain boundary y,(T), and surface

scattering ;/S(T). The temperature dependence of these scattering rates was carefully



determined and the model was verified by the experimental data from Johnson and Christy [3]
for the appropriate sample parameters used there in the measurements, for details see
Ref. [33] and its supplementary information. This model is applied to calculate the dielectric
constants of gold in the studied case (the film thickness is 100 nm, the grain size is equal to
60 nm) for 77 K, 150 K and 300 K temperatures.

3.3. Mode structure of the T-shaped plasmonic waveguide

To investigate the mode structure of the T-shaped plasmonic waveguide and optimize
its geometrical parameters with respect to the desired modal characteristics, 2D eigenmode
finite element method (FEM) numerical simulations have been performed using COMSOL
Multiphysics software. They reveal a family of modes of various orders having both TM and TE
polarizations (Figure S4). The waveguide geometrical parameters defining the localization and
propagation characteristics of the mode are optimized to give the fundamental TMy, mode
(the mode, which will be later used as the operational mode) an advantage over all the other
modes. The height of the waveguide is adjusted to be 1 ym. This value is large enough to
leave the properties of the TMgy mode practically unaffected by the presence of the
semiconductor substrate and prevent its radiation into the substrate, but small enough, so all
other modes are extremely leaky with very shorter propagation lengths (Figure S4). The
waveguide width w essentially determines the localization of modes in the horizontal direction
and the mode effective index, both of them become especially important, when a ring
resonator structure is implemented, since they eventually determine the out-of bend
radiation losses. From this perspective, the decrease of the waveguide width down to 200 -
400 nm particularly deteriorates characteristics of the TE photonic modes, which become
close to the cut-off. For the TMgy mode, however, the width optimization requires careful
balancing: the increase of the radiation losses for smaller widths is accompanied by the
decrease of Ohmic ones, since a bigger portion of the mode becomes localized at the less
absorptive SiO,/Au interface. To take into account all the involved effects, the 2D eigenmode
simulations and full 3D modelling (see Section 3.4) of the ring modes in different width
waveguides have been performed, and the optimal value for the waveguide width w =300 nm
was found.



8'4";_3'1' ; Au
i Bl InAs; 4R 60
H Ing 2,Ga, ,5As
Aly 29Iy 7/AS
SiO,

Nos = 2.83 Mo = 2.46 = 1.9 N = 1.78
Lprop=21.3 um Lprop= 1.2 pm =0, Lprop= 2.4 um

Figure S4. (a) Cross section of the T-shaped plasmonic waveguide with the geometrical
parameters H=1 um, s =50 nm, h =350 nm and w = 300 nm. (b) FEM simulation geometry for
finding eigenmodes of the waveguide: perfectly matched layers are placed around the waveguide
to absorb the leakage radiation. The dashed line marks the area presented in c. (c) Distribution of
the electric field intensity | E| 2ina T-shaped plasmonic waveguide for TMgg, TMg1, TMo, and TEgg
modes at a frequency of hw = 0.62 eV. nesr and Lpop denote the effective mode index and
propagation length, respectively.

3.4. 3D eigenmode simulations of a waveguide ring resonator

The mode structure of a ring resonator based on the T-shaped plasmonic waveguide
(Section 3.3) is analyzed using the three-dimensional eigenmode FEM simulations (Figure S5).
The heights of the InAsy40Pos0 Spacer and Ing7,GaosAs active region are kept constant, while
the waveguide width w and the ring radius R are varied to find the optimal operational optical
mode and provide it with favorable resonance characteristics in comparison with other
modes supported by the resonator. The ring structure is separated from the outer
boundaries of the simulation domain by a distance large enough to ensure the absence of the
overlap between them and the modes’ near-fields. The radiation components were efficiently
absorbed by the perfectly matched layer, partly shown in Figure S5(a) in green.
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Figure S5. (a) Waveguide ring-resonator structure implemented in the 3D eigenmode numerical
simulations. The field map shows the simulated distribution of the electric field perpendicular to

the metal surface |Re(E,)| at distance of 1 nm below it, for the TM®y, mode. The part of the PML

domain (marked in grey color) is not shown to expose the structure. (b) The dependence of the
modal losses of the TMgo modes of various orders on their resonant wavelength for different ring
resonators radii and waveguide widths. The points corresponding to the TM®,, mode are marked
with orange squares.

In the ring geometry, straight-waveguide modes described in the previous section
produce resonances (ring modes) of various orders, e.g. TM’go, TM30, TM®01, TE0, With specific
frequencies (The top index in the mode notation corresponds to the number of mode periods
along the ring and the bottom index indicates the order of the original mode in the T-shaped
waveguide) The spectral range studied in the simulations extends from 0.5 eV (A = 2.4 pm) to
0.9 eV (A = 1.4 pm), covering the entire amplification bandwidth of Ing7,Gag2sAs (Section 4).

For each mode, we can find the quality factor as a ratio of the energy stored in the
resonator to the energy loss per radian of oscillation

W
Q=— 512
2 ) ( )

and mode energy loss per centimeter

%

Yq

a (513)

which is more convenient to use in a steady-state regime. Q and a are calculated using the
complex frequency Q =@+ x 1 returned by the 3D eigenvalue solver and the group velocity
determined from the mode dispersion, found in the designated 2D eigenmode simulations.

In the 3D simulations, we have observed that the ring geometry provides the same
level of loss discrimination between TMgy, and TMgyq, TMg,, and TEgo modes as it was observed
in 2D simulations (Section 3.3). In addition to these modes, the simulations reveal other
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families of modes (e.g., TMqoand TEp; modes), but their quality factors are negligibly small due
to high radiation losses. On the other hand, TMy, modes of different orders show comparable
quality factors (Figure 2(a) in the main article). For this reason, special attention should be
paid to the choice of the operational mode for the proposed coherent SPP source on the basis
of the modal loss and spectral position of the mode.

It can be seen that that the modal loss as a function of the mode order (resonance
wavelength) shows a pronounced minimum (Figure S5(b)). This is the result of a trade-off
between two main sources of loss. At high frequencies, the electromagnetic field of the TMgg
mode is highly confined to the Au/InAsP interface, which results in high ohmic loss. At low
frequencies, the electromagnetic field is less localized, the effective mode index decreases,
which eventually gives rise to radiation loss. To preserve the readability of the graph, only the
points corresponding to TMg, modes of the 8" order are marked, the orders of the other
modes can be determined adding 1 for each step to the left and subtracting 1 for each step to
the right on the same curve. The second observation is that the waveguide width of 300 nm is
more advantageous than that of 250 nm due to lower modal loss (Figure S5(b)). Among the
modes with the lowest modal loss in the spectral region 1.85 - 2.1 pm, the 8" order mode
shows the best performance being the most close to the peak amplification wavelength
(Section 4), while the modes of the 7" and 9™ orders will be suppressed by low material gain
at these wavelengths (Figure 2(b) in the main text). Therefore, the ring resonator design with a
ring radius of 850 nm and a waveguide width of 300 nm is found to be optimal, in particular,
because it ensures a subwavelength size of the device.

4. Spontaneous emission and material gain of the semiconductor

4.1. Interband transitions
The material gain connected with interband transitions can be written as [34,35]

) 4r’e’

c-h p,h — ¢h F , F o )= F,F,h
g (n, p.hew)= 9" (n(F,), p(F,). ho)= 0°"(F,, F, e

M

env env

j“M““(EE ho) Pl (E, - E +heo) ME! (E,E - o) p (EV—E+ha))] (514)

—00

1 1

- dE
_ F-E+7
1+exp E-F, 1+exp HTEThO
KgT KgT

ch(E_ Ec)

where meo is the free-electron mass, F, and F, are the quasi-Fermi levels for electrons and
holes, N is the real part of the refractive index of the semiconductor, M, is the average matrix
element connecting Bloch states near the band edges of the conduction and valence bands
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(Mg, =myE, /12, where E; is the Kane energy), p. is the density of states in the conduction
band, p!" and p" are the densities of states in the valence band for heavy and light holes,
respectively, finally M&™ and M&" are the envelope matrix elements for the transitions

env env
between the conduction and heavy-hole (HH) bands and the conduction and light-hole (LH)
bands, respectively. In the case of the lightly doped or undoped semiconductor, the envelope
matrix element and the material gain can be easily calculated using the k-selection rule and
the parabolic band approximation (Figure S6).

Material gain
a b c (cm”)
2000
1500
E 1000
500
0
500
1000

1500

4 I 1 n L 72000
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
n(10'®cm-3) n(108 cm-3) n(10%cm-3)

c—h

w ON the electron and

Figure S6. Dependence of the material gain due to interband transitions g

hole concentration in the undoped Ing7,Gao 28As for different frequencies at room temperature: (a)
hw =0.576 eV, (b) hw = 0.637 eV, (c) hw = 0.701 eV. The following parameters are used in the
calculations for Ing 72,Gag 28As: Me = 0.036Meq, Mup = 0.413Meo, My = 0.042meg , Eg = 0.557 eV [27].

The rate of spontaneous emission in the frequency range from hw to hw +dhw per unit
volume per unit time is given by

bulk _ bulk _ n’w’ grcn-:t(Fn’ Fp ! ha))
spont(n p ha))d (ha)) spont(Fn' Fp’ha))d (ha))_ 7[2hC2 (ha)— Fn + Fp] d(ha))
1-exp| ———+
kgT

(S15)
and the total spontaneous emission recombination rate is equal to
Ust;)lélrl:t frs g:; n p h(t) d(hw) Bbulk(n p) <np_neq peq )’ (516)
0

where Byui(n,p) is the bimolecular recombination coefficient, neq and peq are the equilibrium
electron and hole concentrations, respectively. In order to use expression (S16) for the
recombination rate in the finite difference solver, Byu(n,p) is fitted with the polynomial
function of n and p (Figure S7).
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Figure S7. By,(n,p) dependence on the electron and hole concentration in the undoped
Ing.72Gap 28As at (@) room temperature and (b) the 4" order polynomial fit of this dependence.

4.2. Intervalence band absorption

The split-off (SO) energy As, in Ing7,Gag2sAs is equal to 0.38 eV and the intervalence
band absorption (IVBA) can decrease material gain in the photon energy range 0.38 - 0.7 eV,
where transitions between HH and SO bands play a notable role and LH-HH and LH-SO
transitions are insignificant [36]. The IVBA coefficient "™ can be found similar to equation

mat

(S14). The main difference is that the average matrix element connecting Bloch states near
the band edges of the valence and split-off bands is expressed as M, =hzk2Ef/(Eg +ASO)272

[37], where hk=,/2mhhiEv—Ei is the hole momentum. Figure S8 shows the calculated
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Figure S8. Material gain due to band-to-band and inter valence band transitions and net material
gain as functions of the hole concentration (the electron concentration is equal to the hole
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concentration) at a photon energy of hw = 0.637 eV. The split-off hole effective mass is equal to
0.15meo [27]. The photon energy is well above A, and the IVBA does not significantly affect net
material gain.

5. Spontaneous and stimulated emission in waveguides and resonators

5.1. Modal gain and spontaneous emission into waveguide modes

Spontaneous emission rate I, atthe photon energy hw is connected with the optical

gain g at the same frequency through the Einstein coefficients A and B [34]. In a waveguide,

the ratio of these two coefficients is equal to the density of modes per unit energy per unit
waveguide length:

Aho) 1
B(ha))_pwavegde(ha))_ZhUg(h )’ (517)

and the modal gain is expressed as

Hﬁ(x, Y, ha))gmat(Fn(x, z), F,(x,2), ha))E(x, z,ho) dxdz
C .
h — active . 518
gmodal( w) 87R)g(ha)) +00 +00 ( )

J' fW (X, 2, ho )dxdz

—00 —00

In the above expression, Puwaveguide(NW) is the density of modes per unit energy per unit
waveguide length, E(x,z) and W(x,z) are the distributions of the complex electric field and the
energy density of the guided mode in the waveguide cross-section, respectively. The integral
in the numerator of equation (S18) is taken over the active region of the waveguide. This leads
us to the expression for the spontaneous emission into the guided mode

~ gmat(Fn(X’Z)! F (X,Z),ha)) 2
¢ ([ A(x.z,70) hor—F.(x 2) + F.(x.2) [E(x, 2, hw) dxdz

active 1—
ot (1) = e (519)
8z°huv, (ha))J' J'W (X, 2, ho )dxdz
that can be written in a more compact form:
H [y (F,(x,2), F,(x,2), ha))|E(x, 2,hw)’ dxdz
oot (10) = 2 — , (520)

f J'W (X, 2, hew )dxdz

—00 —00

where
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cn(x,2,h0)  GualFa(X,2), Fy(X,2), h0)

local
F.(x,2),F (X,2), hiew S21
o (R 0.2, Fy (. 2).h0)= 8z’ho, (ho) ho —F,(X,2)+ F(X,2) 521
¢ 1-ex
KgT

can be calculated in the same way as (0, p,iw).
5.2. Spontaneous and stimulated emission in a resonator

In the ring resonator, the density of modes can be written as

Peaiey 1) = 225 (ho —ho,) (S22)

where w; are the eigenfrequencies of the ring resonator and the factor of 2 comes from two
directions (clockwise and anticlockwise). It gives the expression for the spontaneous emission
into the cavity mode with the eigenfrequency w; per unit ring length per unit time

n(w;+Aw)

i c
ont. = dn ho —ho; )——
= | dboplo-no)

gmat<Fn(X’Z)1 F (X’Z)vha)> |E(X 7 ha))|2

H dxdz n(x, z,hiw)

active 1_exp[ha)_ Fn(xk' Z-I)-+ Fp(x! Z)j
x ey : (523)
J' J'dxde(x,z,ha))

J‘n J' n(x,z,ho,) P (x.2) Fy (X, 2), 10 E(x,2,h@, ) dxdz

o [ha)i—Fn(x,z)+ Fp(x,z)]

o 1-exp
_cC KgT
- 470 +00 400

J' J'W (x, 2, ho, )dxdz

—00 —00

where L is the length of the ring resonator (L=2nR, where R is the radius of the ring
resonator). For convenience, we rewrite equation (523) in the form of equation (S20)

J‘J‘ ||ocal F (x,2), F (X,Z)jla)i)E(X,Z,ha)inXdZ

pont

Ripon = 2 —— , (S24)
j J'W (X, 2, ho, )dxdz

—00 —00

where
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on(x,z,hw)  GnalFa(%,2), Fy(X,2), ;)

ho. —F (x,2)+F (x,2))
KeT

(525)

ool (F (x,2), Fy (x,2))=

Figure S9 shows the dependence of R1°? on the electron and hole concentrations in the

spont
plasmonic ring resonator with a ring radius of 850 nm. It should be noted that the
dependence of R!®® on n and p is remarkably different from that of the spontaneous

spont
emission in a bulk semiconductor (equation (S16)). This can be easily seen, if one rewrites
equation (S25) in the form of equation (S16)

ol (F L F )= R [n(F,), p(F,)] = Bi(n, p)x (np — Ny, Pyy) (S26)

and plot Bi(n,p) versus the electron and hole concentrations (Figure S10). The dependence of
B; on the carrier concentrations gives a pronounced peak, since the photons or SPP quanta
are emitted into the resonator mode at a frequency of about 0.637 eV in contrast to the case
of a bulk material, where the radiation spectrum is very broad (Figure 2(b) in the main text).

R/ local
spont | hw=0.637 eV

(10" cm's™)

4
25
3
420
£
" {15
o 2 '
=
10
1
05
0 0.0
0 1 2 3 4

n (108 cm3)
Figure S9. The dependence of R'°@ 51 the electron and hole concentrations in INg.72Gag.28AS

spont

calculated at a frequency of 0.637 eV for a ring radius of 850 nm.
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B“ | hw=0.637 eV

p (10" cm?)

Figure S10. The dependence of Bi(n,p) on the electron and hole concentrations in Ing 7,Gag 28AS
calculated at a frequency of 0.637 eV for a ring radius of 850 nm.

5.3. Enhanced spontaneous emission and Purcell effect

Highly localized waveguide and resonator modes can enhance spontaneous emission
affecting the carrier recombination dynamics, and therefore the overall process of
amplification of plasmonic modes. At the same time, the decay rate of an excited state of a
dipolar emitter is highly dependent of the electromagnetic environment around the emitter,
the phenomenon which is known as the Purcell effect [38]. In our case, the environment is
quite complex, including the semiconductor channel structure, composed of the layers of
different refractive indexes, surrounded by low-refractive index dielectrics, with a
semiconductor substrate on one side and a metallic film on the other. This produces an
elaborated mode structure, creating new channels in which the emitter can radiate.
Furthermore, the presence of the metal can noticeably affect the relaxation dynamics,
introducing a direct quenching mechanism, the phenomenon specifically featuring the
process of amplification of SPPs [39].

From equations (S15), (520) and (S21), one can obtain the Purcell factor in a waveguide
for the guided mode at a frequency hw:

2
c? y ‘Ejmode(xiz’ha) )‘

80’0 )™ (heo J(X, 2, hev) TTWJ - (x, 7,hew )dxdz

—00 —00

P, moe (X, Z, i) = , (527)

j mode
g

to the sum of all the Purcell factors for guided and radiation modes:

where v is the group velocity of the /" mode. Net Purcell factor at a frequency hAw is equal
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M guiged
P(x,z,hw)= ) P

j=1

(X’ Z, ha))+ Pradiation modes ! (528)

j mode

where Mgideq is the number of guided modes at a frequency hw and Pragiation modes IS attributed
to radiation modes. In a complex structure, Pragiation modes CANNOt be easily estimated, and,
instead of calculating Pragiation modess We use 3D eigenmode FEM numerical simulations to
evaluate P(x,z,hw).

The decay rate y(r) of a dipole p in an arbitrary electromagnetic environment is

proportional to the power Ss“(r) emitted by it. The latter can be determined in a
straightforward way if the electric field at the dipole position EX(r)is known, including the

electric field of the dipole itself and all the electric field components resulting from interaction
of the emitted field with the surrounding structure [40]:

s“'(r)=%|m[p E(r)]. (529)

Then, Purcell factor can be calculated normalizing Ss"(r) to the power emitted by the dipole
placed in uniform medium S (vacuum or uniform dielectric, depending on the reference):

str SSI’t I EStI’
p(r)-20)_S7(r)_Imlu Eq(r)] (530)
4 S Im[p-E' ]

from where we can obtain

str |m[ll Etot(r)] unlf unif
(r)= - B P(r)y™™". (531)

tot

The fields involved in equation (S31) can be directly obtained from the full 3D numerical
simulations of the radiating dipole in the required electromagnetic environment. To prove the
validity of this approach, it was tested on the physical system of a radiating dipole near a
Si/Air interface. The obtained Purcell factor is found to be in excellent agreement with the
exact analytical solution which can be derived in that case [40].
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Figure S11. (a) Layout of the numerical simulation model of a dipole radiation inside the T-shaped
plasmonic waveguide. The position of the dipole, marked by a red mark, was scanned across the
active Ing72Gao 28As region, marked by a red rectangular. (b) The Purcell factor map in the active
INg.72Gap.28As region of the T-shaped plasmonic waveguide derived from the numerical simulation

results. (c) The map of the Purcel factor component originating from coupling to the TMgo
waveguide mode, calculated using equation (S27). (d) Difference between panel b and panel c.

As the next step, this approach is implemented to determine the Purcell factor in the T-
shaped plasmonic waveguide. The 3D numerical simulations are performed for various dipole
positions (x,,2,) in the Iny7,Gag.eAs active region and monitoring the electric field E(x,,z,)
(Figure S11(a)).

Then, employing equation (530) the Purcell factor P(r)=y* (r)/y""**(r) map in the
active region is created (Figure S11(b)). Generally, and especially at the upper part of the
region, the magnitude of the Purcell factor is lower than that in the uniform Ing7,Gag,sAs. This
can be explained by the fact that the waveguide width is subwavelength and, therefore, the
Purcell factor can be expected to be in the interval between the one in uniform Ing7,Gag2sAs

(P'""-"GE‘QZEAS = 1) and the one in uniform Si0, (P¥°2 = n%°: /n MoCloaf  pInnCGaahs 0 4). On the
other hand, the most pronounced feature of the Purcell factor distribution is its correlation
with the intensity of the main TMy, mode, which is in agreement with what can be expected
from equation (S27). From this formula, the Purcell factor component originating from
coupling to TMg, waveguide mode was calculated and its map in the active region was plotted
(Figure S11(c)). After subtraction of this component from the all-inclusive numerical result
(Figure S11(b)), practically uniform distribution of Purcell factor was obtained (Figure S11(d)).
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6. Self-consistent numerical simulation of the SPP nanolaser

6.1. Electronic model

To simulate the carrier behavior within the semiconductor, we use the two-component
drift-diffusion model. Since the carrier flow in the structure is predominantly directed along
the vertical z axis (Figure S12), one-dimensional electronic simulations are appropriate for the
numerical simulation of the proposed amplification scheme and the proposed SPP nanolaer
based on it [33,41]. In this case, the carrier transport in the steady-state regime is described
by six first order non-linear differential equations

do __
dz i
%, =4_7[q(p_n+ND_NA)’

dz

dn 1 Jn—ﬂ—"nEz,
dz gD, D

n (S32)
% — _i J 0 + ’Lip EZ’
N dz ab, D,
dZn = qU = q(Ustim +Uspont +UAuger )’
a3,
E = _qU = _q(Ustim +Uspont +UAuger )’

where all notations have their usual meaning [42], i.e. ¢ is the electrostatic potential; E, is the
static electric field; g is the electron charge; ¢ is the static dielectric constant; p and n are the
concentrations of holes and electrons, respectively; Np and N, are the donor and acceptor
impurity concentrations; D, and Dy, y, and p, are the diffusion coefficients and mobilities for
holes and electrons, respectively; /, and J, are the electron and hole current densities; U is the
electron-hole recombination rate that includes the stimulated emission (Usim), Spontaneous
emission (Uspon) and non-radiative Auger (Uauger) recombination rates. These differential
equations must be completed by 18 interface boundary conditions at 4 interfaces: three - at
the metal-semiconductor contact (z = 0), six - at the InAsP/InGaAs heterojunction (z =s), six -
at the InGaAs/AllnAs heterojunction (z = s+h) and three - at the back contact (z = H).
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w=300nm

R=850nm

Figure S12. Structure of the electrically driven coherent SPP source. Subwavelength ring resonator
of the electrically driven coherent SPP source is based on a T-shaped plasmonic waveguide.

The back contact is modeled as an ideal Ohmic contact:

(Plz:H—oz\/'
Npyo=n2", (533)
_ AlInAs
plz:H—O_ peq '
where V is the bias voltage, ne,™™ and peM'™° are the equilibrium electron and hole

concentrations in bulk AllInAs.

Boundary conditions for the tunneling Schottky contact can be derived as follows. If
the semiconductor is heavily doped, the Schottky barrier height and barrier width are small,
carrier tunneling through the barrier dominates over other transport mechanisms and
contact exhibits well pronounced ohmic properties as was shown in Section 2. The current
density through the contact can be expressed as

chontact ' (534)

Pcontact

J

contact —

where Veontact IS the voltage drop across the contact and peontact iS the specific contact resistance,
which in general is voltage dependent pcontact(Veontact). Accordingly, at a distance of the Schottky
barrier thickness W, ¢| ,, =@|,  +Veua- This allows us to implement proper boundary

conditions at the tunneling Schottky contact in the drift-diffusion model by placing the actual
boundary for the simulation domain at the distance W from the metal-semiconductor
interface [43]. In the low resistance and heavy doping limit, the boundary conditions at the
Au/n*-InAsP interface can be written as

P o= 30 302" (3,
{ nl — AP (835)
=W .

€q
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Here p,“°"(/,) is the specific contact resistance attributed to electron tunneling through the

Schottky barrier at the Au/n*-InAsP contact, which can be calculated by solving of the
Schrédinger equation for a parabolic potential barrier (see Section 2) and neq™" is the
equilibrium electron concentrations in bulk InAsP. It is easy to see that equation (S35) can
approximated by the ideal-ohmic-contact boundary conditions

gp |z:W = O’
S36
{n |Z=W: r]InASP ( )

eq !

as the contact resistance tends to zero. For InAsP with a donor concentration of 3x10'® cm?,
the specific contact resistance is less than 1.5x107 Q cm? and ¢|,-w<0.015V at a current
density of 100 kA/cm? (this value is well above the operating current of the device under
consideration). Since the voltage drop across the barrier region does not exceed kgT at room
temperature, ideal-ohmic-contact approximation can be used. At liquid nitrogen temperature,
qo | -w> 4ksT at J = 100 kA/cm?, and the boundary conditions in equation (S35) are preferred.
In the case of the double-heterostructure tunneling Schottky barrier diode, when the
threshold current is significantly reduced as temperature decreases, the ideal ohmic contact
approximation gives the same result as the non-ideal contact model. In contrast to electrons,
holes, being minority carriers in n*-InAsP, do not experience tunneling and the boundary
conditions for them should be given in accordance with the thermionic emission theory
[42,44]:

‘]p |z=+0: —q Upr ( Y |y=+0 - pO)’ (S37)

where p, = N"" F1/2|'(EV|Z:+0 - Fm)/kBTJ is the quasi-equilibrium hole concentrations at z=0

(F12 is the Fermi-Dirac integral, Fy, is the Fermi level in gold, E,|,-o, is the valence band edge at
z=0, NS"" is the effective density of states in the valence band of InAsP), Upr is the effective
recombination or collection velocity for holes at the metal-semiconductor interface. Since the
boundary condition for holes must be given at z= W, equation (S37) is difficult to use in
numerical simulations. If the concentration of holes (minority carriers in InAsP) is much less
than N,™°, which is valid in the n*-layer of the double heterostructure, we can write boundary
condition (S37) in the equivalent form at z = W [42,43]:

: E,—(E| . ~F| .. )-V
‘Jp |ZW=_%T2eXp " ( C|Z:W ” -F|ZW) contact
& B
S38
Fm - Fp ( )
X< EexXp ?Z:W -1\
B

Here, F |, =ksT invFl,z(n|ZZW/NC'”ASP) and FpL:W =kgT invFl,z(p|Z:W/NJ”A5P) are quasi-Fermi

levels at z=W (invF,(x) is the inverse Fermi-Dirac integral of order %), E.|,-w is the
conduction band edge at z= W and F,, is the Fermi level in gold. Since in the Veontact is smaller
than kg7, the boundary condition for holes can be simplified to
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\]plzzW:_MTzexp[_ g

(27h)

If the hole current density is smaller than the expression before the braces in equation (S38),
the boundary condition can also be used in the form of Fy | ,-w = Fm,.

The heterojunctions are simulated using thermionic emission boundary conditions
[45,46]. Thus, at the INAsP/InGaAs heterojunction, we obtain

-E/| . +F F.—F
liow * P | exp| ———W |16, (S39)
kaT kaT

-

(P |z=s—0= (P |z=s+0'
InAsP InGaAs
& Ez |z:s—0= & Ez |z:s+0'
‘Jn |z:s—0= ‘]n |z:s+0’
A InAsP oA InGans nl AE AP -InGaas
_ n n n n H =540 c
I les0=—AUp " Npeg o + inGaas dUnr N, Fyo| INVE,, N oons | T T 1 (540)
mn c B
‘]p |z:s—0: ‘]p |z:s+0’
InAsP D | AE MAP-InGans
_ InAsP p InGaAs p | InGaAs : 7=5+0 v
‘]p |z=s—0_ qu, P |z=s—0 ~ ncans AVpr N, F,| INVE,, InGa;«s + '
m, N, kgT
InAsP InGaAs InAsP InGaAs H H
where m, (m, ) and m, (mp ) are the effective electron and hole masses in InAsP

(InGaAs), €™P and €M% gre the static dielectric constants of InAsP and InGaAs, AE/MsPInGaAs
and AE,/MSTINGaAs = pinGahs _ p INASP _ A IMASPINGaAs  are  the conduction- and  valence-band
discontinuities, i.e. the differences in energy of the conduction and valence band edges in
INAs,.4Pos and Ing7,Gag2sAs at the heterojunction (at room temperature AE™P1"As = _0 13 eV
[24,471), Un™" (Un"®%) and up ™ (Up"®**) are the effective recombination or collection
velocities for electrons and holes in InAsP (InGaAs), which are equal to the quarter of the
corresponding average thermal velocities in InAsP (InGaAs). Boundary conditions at the
second (InGaAs/AlInAs) heterojunction are written in the same way.

6.2. Optoelectronic model

As it was discussed above, the continuity equations for electron and hole generation
and recombination involves three processes: non-radiative Auger recombination (Uauger) and
recombination for the spontaneous (Usyont) and stimulated (Usim) emission. The latter two
connect electrical and optical properties of the structure.

Recombination rate Ua.er attributed to Auger process is proportional to the third
power of excess carrier concentration and is expressed as

U auger (2) = [C,(2) p(2) + C,, (2)n(2)]x [N(2) P(2) = N (2) P (2], (S41)

where n and p are the electron and hole concentrations, neq and peq are the equilibrium
electron and hole concentrations, C, and C, are the electron and hole Auger recombination
coefficients. In Ing7,GagsAs at room temperature, G, + C, = C=3.8x10"® cm®s™” [48] and the
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Auger recombination is mainly induced by the conduction-to-heavy-hole recombination
accompanied by the heavy-to-split-off transitions, therefore, C, << (, = C.
Spontaneous emission includes emission into free space (U e ) and into the resonator

spont
modes (U resonator )

spont

U _ U free + U resonator . (542)

spont spont spont

Recombination rate associated with emission into free space can be expressed as
U gont (2) = Pree (2)Byui(n(2), P(2)) [n(2) P(2) ~ 1y (2) Py (2)], (543)

where function Byu(n,p) is calculated separately and fitted with the polynomial function of n
and p (Section 5.1) and P is the normalized Purcell factor for emission into free space
obtained from the 2D eigenmode FEM simulations

1 w/2
free(z) - W j- I:)free(x1 Z)dX. (544)

-w/2

For each mode of the resonator (see Figure 2 in the main article), spontaneous emission rate
U™ is calculated explicitly using equations (S24,S25) and the distribution of the
electromagnetic field of the mode in the waveguide cross-section of the ring resonator
obtained in the 3D eigenmode simulations. The total recombination rate attributed to
spontaneous emission into the resonator modes is equal to the sum over all modes of the
resonator:

M
Ugat " (2) = U™ (2), (545)
where M is the number of modes.

Since the thickness of the InGaAs layer is only 350 nm, spontaneous emission into free
space does not experience noticeable attenuation or amplification. The emission into
resonator modes is directed parallel to the wafer, which provides favorable conditions for
strong light matter interaction. Stimulated emission into the /" resonator mode can be written
as

1 R+w/2

w J'|Ei(r,z)|2dr
O (N(2), P(2), Fi0; ) S‘ XMRWZ (S46)

fdzfer (r, z)

—0o0

cn(z)

U (2) =

where R is the radius of the ring, gma is the material gain calculated explicitly using
expression (S14), w; and §; are the frequency and power of the /" resonator mode, respectively,
uff is the energy velocity of the /™ resonator mode obtained in the 2D eigenmode simulations,
E; and W; are the distributions of complex electric field and the energy density of the /"
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resonator mode in the waveguide cross-section. Finally, we need to sum the stimulated
emission over all resonator modes:

M
Ugn (2) =) U (2). (547)
i=0

To complete the self-consistent model, six non-linear differential equations (S32) must be
supplemented with M rate equations for M resonator modes, which can be written as follows:

a™™'s, =w f hoU¥™ (2)dz. (548)

modal

In the above equation, the modal loss of the /™ resonator mode q; is the sum of
af M™% = _gpmeddl representing loss or gain in the semiconductor, a° ™% attributed to the
ohmic and radiation losses of the ring-resonator mode and a,° ™% arising from the emission

coupling to the bus plasmonic waveguide (Figure 3(a) in the main article):

aimodal — _giSmodaI +ai()modal _'_aiCmodal . (549)
Here, g° ™! can be expressed explicitly
c 400 R+w/2 )
i PR | ﬁ(z){ [IEi(r.2)] dr}gmat(n(z), p(z), ho, Mz,  (S50)
8rvf [ dz [drw,(r,z)~  LRw2
—o0 0
where a° ™% is taken from 3D eigenmode simulations (Section 3.4), while a;“™°%' should be

evaluated from the 3D FEM simulations. In order to do the latter, a numerical simulation
model has been created (Figure S13(a)), in which the ring-resonator modes are excited at their
resonant frequencies (these frequencies are found in the 3D eigenmode simulations in
Section 3.4) using an input bus waveguide, while the output waveguide was placed on the
opposite side of the ring (shown on the top). The field map shown in Figure S13(a)
corresponds to the coupling of the TM%, mode, which is the operational mode of the
proposed coherent SPP source (see the main article). The output monitoring distance Lyonit iS
set to be sufficiently large in order to avoid the influence of small radiation losses of the ring-
resonator mode on the output power. The power flow in the ring is probed a quarter of the
circle before the point of the smallest separation to monitor it well beyond the region where
the coupling is important. The coupling coefficient is then calculated with a proper correction
for the attenuation of the mode in the ring and in the output waveguide section:

Lout
I out eXp Lstraight

prop

| Gk |
ring EXP| — ZLTng

prop

Co = (S51)
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where |, and |, are the power flow integrals over the INAs40Po60 Spacer (domain, where

ring
the influence of the scattered fields is minimal) at the corresponding probing positions

(Figure S13(a)) and Lj3 and L5%" are the mode propagation lengths in the ring and the

straight waveguide, respectively.
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Figure S13. (a) Schematics of the geometry for evaluation of the coupling ratio to a straight
waveguide (on top) overlaid with the simulated distribution of electric field |Re(EZ1, when the

TM2y0 ring-resonator mode is excited using the input bus waveguide. The edge-to-edge distance
between the input bus waveguide and the ring resonator is equal to 150 nm and the output bus
waveguide is separated from the resonator by a distance of d = 200 nm (b) Coupling coefficient for
the TM®y, mode as a function of the edge-to-edge separation distance between the ring resonator
and the output but waveguide. (c) Coupling coefficient between the ring resonator with a radius of
850 nm and the output bus waveguide calculated for TMgo modes of different orders.

The coupling coefficient for the operational TM%y, mode is studied as a function of the
edge-to-edge separation distance between the ring resonator and the output bus waveguide.
As can be expected, the coupling ratio decreases exponentially as the separation distance
decreases (Figure S13(b)) [49]. On the basis of the results, in the design of the coherent
plasmonic source a separation distance of 200 nm is used providing the optimal trade-off
between the magnitude of the output signal and the inflicted "useful" cavity losses.
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As the next step, we compare the coupling coefficients C©°“?' for TM’go, TM3y, and TM%g
modes, which compete for the gain provided by the InGaAs active medium (Figure S13(c)).
Since the fields are extended out of the semiconductor core further for lower orders of TMg
modes (the modes with the lower resonant frequencies), their coupling coefficient is higher at
the fixed value of the separation distance between the ring resonator and the output bus
waveguide. In contrast, high frequency TM®y, and TM'%,, modes have better localization of the
electromagnetic field and lower coupling.

Finally, we use the coupling coefficient C°°*P® to calculate the distributed coupling loss
a“ ™% for each mode of the ring resonator:

O{C modal _ In(l_ Ccoupl ) (S52)
2zR

For each resonator mode, the output power of the proposed SPP source can be found as
Sioutput — Sicicoupl — Si |l— eXp(— 27Z'RCZIC modal )l (553)

where C°*' is coupling coefficient between the ring resonator and the output bus waveguide
for the /™ resonator mode.

6. Surface recombination

Non-radiative surface recombination can make a significant contribution to the total
current and dramatically decrease the efficiency of nanoscale electronic and optoelectronic
devices. The influence of electron and hole trapping by defects at the interfaces on the
characteristics of the proposed coherent SPP source is evaluated by introducing a surface
recombination in the model in a self-consistent way.

We treat the surface recombination rate using the Shockley-Read-Hall model [50]:

np—n

1 eqlpeq , (S54)
S*(n + n1)+ S*(D + pl)

P n

Usurf (n’ p) =

where n and p are the electron and hole concentrations nearby the interface, neq and peq are
the equilibrium carrier concentration, and n, and p; are the equilibrium concentration of
electron and holes, when the Fermi level at the interface coincides with the energy level of the
trap center, S, and S, are the SRVs for electrons and holes, respectively, which can be also
expressed as

Sn = Ntrapo-nUTn’ (555)

Sp = NyayOUrp- (S56)
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Here, Ny, is the surface density of trapping centers at the interface, g, and g, are the capture
cross-sections for electron and holes, ur, and ur, are the thermal velocities of electrons and
holes, respectively. Accordingly, the boundary conditions at the interfaces are changed
appreciably. For the InAsP/InGaAs heterojunction we obtain

(0 |z:s—0= §0 |z:s+0’
InAsP InGaAs
3 Ez |z:s—0= 3 Ez |z:s+0'
‘]n Iz:s+0= ‘]n Iz:s—O +quurf |z:s—0 + qU surf |z:s+0’
'Jp |z=s+0= J p |z=s—0 _qU surf |z:s—0 - qU surf |z:s+0’
InAsP InAsP—InGaAs
. n| AE
J | — n qUInGaAsN InGaAs F invE [ 7=5+0 j+ c
n lz=s-0 InGaAs nr c 1/2 1/2 InGaAs S57
mn NC kBT ( )
InAsP
- qUnr n |z:s—0 _qU surf |z=s—0’
InAsP InAsP—-InGaAs
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‘]p |z=s—0_ —mmqupr N, F mVFUZ[ N InGaAs ]+ k.T
p v B
InAsP
+ qur p |z=s—0 +quurf |z=s—0’
where
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The boundary conditions at the InGaAs/AlInAs heterojunction are written in the same way. In
the above expressions, S,"¢**'™P and §,"¢*<IMP gre the surface recombination velocities
(SRVs) for electrons and holes in InGaAs at the InAsP/InGaAs heterojunction. Similarly, G, InAsP-
nGAs and 5,4 are the SRVs for electrons and holes in InAsP at the InAsP/InGaAs
interface. For electrons and holes in Ing7,GagsAs, the SRVs at the INAS40Po60/IN0.72Gag28AS
and Ing7,Gao28As/Alg29lNg71As  heterojunctios do not exceed 2x103cm/s [51]. In our
simulations, we also use this value (2x103cm/s) for recombination in InAsg4Poso and
Alg2olng71As, since surface recombination plays a significant role only in the active InGaAs
region, where there are very high concentrations of excess electrons and holes. This
guarantees that the first term in the numerator of equation (554) is much larger than the
second one. In contrast, the concentrations electrons and holes in InAsP and AllnAs are close
to equilibrium values, therefore, Usyrf|,-s.0 and Usure| z=n+0 are much smaller than Usyrf| z=s+0 @and
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Usurf| 2=n-0 @and do not have an impact on the injection current and other characteristics of the
proposed coherent SPP source.

Figure S15 presents the simulated distribution of electrons and holes near the
InAsP/InGaAs and InGaAs/AllnAs interfaces at a current density of 30 kA/cm?. It is clearly seen
that the minority carrier concentrations in InAsP and AllnAs are much smaller than the
concentrations of majority carrier even in the regions near the heterojunction. In the active
InGaAs layer, the electron and hole concentrations are almost equal to each other
(Figures S15), except very thin regions near the heterojunction. It should be noted that
concentrations in the bulk of the active layer (e.g., in the center of this layer) are typically used
to estimate the influence of surface recombination on the device efficiency. However,
Figure S15(c,d) demonstrates that this approach can hardly be used for quantitative
calculations. In our structure, at current density of 30 kA/cm?, the surface recombination rate
at the InAsP/InGaAs interface is 1x10?' cm™s™, it is twice as small as that calculated using the
concentrations in the bulk of the InGaAs layer Figure S15(c). At the InGaAs/AllnAs interface,
this effect is not well pronounced under the same injection current (Figure S15(d)). The net
surface recombination rate is about 3.3x10?' cm™s” corresponding to a current density of
530 A/cm?, which is negligible compared with the total current J = 30 kA/cm?.

a 10%° T 3 b 10 T T T
] 10"
15 E § 10"
< S o
] g "
C c
o 1 (=) 1c
o | S 1g"
o ] 2 r
5 E & 10" E
e — electrons > I —— electrons
holes 3 10 — —— holes
101'17“ 1 1 [ il m'."....I....l....l....’
30 40 50 60 70 380 390 400 410 420
z (nm) z (nm)
c 3.0r T T T d 30— T T T
[ : N\
25F B 25K \ N
N F - \
E" L g,, L i
£ 20F E 20K b
o + (W) -
S sk 2 15k .
?. [ 2 [
A A F
8 10f SESRELS .
A H A F
05F 05F -
OO_"""""""""_ OO'....I........I....'
30 40 50 60 70 ‘380 380 400 410 420
z (nm) z (nm)

Figure S15. (a,b) Simulated distribution of carrier concentration and (c,d) profiles of the Shockely-
Read-Hall rate equation np/(n/Sp + p/Sn) in the vicinity of (a,c) InAsP/InGaAs and (b,d)

InGaAs/AlinAs heterojunction at a current density of 30 kA/cm?.
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Figure S16 shows that surface recombination does not have a substantial influence on
the output characteristics of the proposed SPP source. At a current density of 30 kA/cm?, the
contribution of surface recombination to the total current is only 1.8%. We should emphasize
that poor-quality interfaces can give rise to the surface density of trapping centers and
increase the SRV up to 1x10* cm/s. Nevertheless, even in this case, the contribution of surface
recombination will not exceed 3 kA/cm?, which is only about 10% of the total current.
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Figure S16. The dependence of (a) output power in the waveguide and (b) percentage contribution
of different recombination processes (Auger recombination, spontaneous emission, stimulated
emission and surface recombination) in the total current on the injection current. The current
percentage for stimulated emission is negative below J = 8 kA/cm? where absorption prevails over

stimulated emission.
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7. Coupling to photonic waveguide

Coupling of the nanolaser output to photonic waveguides instead of plasmonic ones has a lot
of advantages, such as compatibility with a standard photonic circuitry and low propagation
loss. To compare the coupling efficiency from the nanolaser to the native plasmonic and Si
photonic waveguides, eigenmode numerical simulations of the resonator coupled to an
output bus waveguide were performed. For a fare comparison, the imaginary part of the
eigenfrequency (related to the combined output power into the bus waveguide, ohmic,
scattering and radiation losses) was equalised and set to the one in the lasing regime
considered above. The parameters and position of the photonic waveguide were optimized to
obtain the best coupling efficiency. The Si photonic waveguide has a cross-section of 400
nmx400 nm and supports one TE and one TM mode. It was placed at an edge-to-edge
distance of 350 nm from the nanolaser and 75 nm above the metal surface supporting the
SPP mode (Figure S17). In the absence of a continuous plasmonic contact layer in this case,
the nanolaser was placed on a 100 nm thick metallic island of a circular shape (R, =1.65 um),

cut below the facing edge of the photonic waveguide. The optical power coupled to the output
Si waveguide was calculated to be about 5 times lower than in the case of a native plasmonic
waveguide, considered in the main text. The underlying reason is the mismatch between the
modes in the ring-resonator and the Si waveguide leading to an additional scattering loss,
while in the case of a plasmonic waveguide they are perfectly matched, both in terms of the
modal index and spatial distribution. Therefore, albeit of a lower efficiency, the coupling from
the proposed nanolaser to photonic waveguides is possible and due to the advantages for the
latter may be useful for certain applications.

met

IRe(E)|

Figure S17. ‘Re(E)‘ fieldmaps (a view from the bottom) plotted at a 25 nm height above the metal

surface for the nanolaser coupled to (a) a native plasmonic (with sizes given in Fig. 1) and (b) a
silicon (400 nmx400 nm) waveguides obtained using the eigenmode numerical simulations. The
scale is saturated to visualize the coupling region and the output mode profiles.
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