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1. Amplification scheme 

One of the main advantages of plasmonic nanostructures for optoelectronics is the 

possibility to use the SPP supporting metal-semiconductor interface for electrical injection. 

However, it is extremely difficult to realize this concept in practice because the best metals—

gold, silver and copper, while other plasmonic materials (materials with a negative dielectric 

function) introduce high absorption increasing modal losses by orders of magnitude. The 

recently proposed so-called ‘alternative’ plasmonic materials [1] are good prospects for 

epsilon-near-zero and negative-refractive-index metamaterials, but in the infrared they are 

too lossy and cannot compete with gold and silver in deep-subwavelength plasmonic 

waveguides and cavities. For example, for titanium nitride, εTiN=–75 + 23i at λ = 1.55 μm [2], 

while for gold, the imaginary part of the dielectric function, which responsible for losses, is at 

least twice lower: εAu=–115 + 11i [3]). In addition, the electrical conductivity of the alternative 

plasmonic materials is much lower than that of silver and gold, which prevents their use as 

efficient electrical contacts. 

The use of metal-semiconductor Schottky contacts [4,5] is the most natural realization 

of electrical pumping in plasmonic devices. This approach provides population inversion in 

the immediate vicinity of the metal-semiconductor interface that is extremely important, since 

plasmonic modes are highly confined to the metal surface. But such a pumping scheme is not 

without its shortcomings. To the best of our knowledge, only one binary semiconductor 

material (InAs) forms Schottky contacts to gold and silver with a barrier height greater than 

the bandgap energy of the semiconductor [6,7], which is required for amplification [4]. This 

limits the operation wavelength to around 3 µm and operation temperature to below 150 K as 

consequences of the small bandgap energy and high Auger recombination in InAs, 

respectively. Inability of the Schottky barrier to block majority carriers under forward bias 

leads to a quite high leakage current even in a single heterostructure SPP amplifier [8] that 
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makes the amplification scheme power-inefficient at small intensities of the surface plasmon 

field. 

Double heterostructures and multi-quantum wells could potentially solve this problem, 

but it is not easy to provide a high overlap of the plasmonic mode with the active region of the 

semiconductor structure [9,10]. The reason is that gold, silver and copper typically form 

rectifying Schottky contacts to direct-bandgap semiconductors, while low-resistance ohmic 

contacts are needed for creation of the population inversion. Common techniques of 

producing Au ohmic contacts to direct-bandgap III-V semiconductors are based on Au alloys 

(e.g. Au-Sn, Au-Be, Au-Zn, Au-Ge) or non-alloyed multilayer metallic structures such as Cr/Au, 

Ni/Au, Ti/Au and Ti/Pt/Au [11]. Despite the fact that the latter was successfully used in metal-

coated nanopillar lasers [12,13], the above mentioned approaches cannot be utilized for loss 

compensation in nanoscale plasmonic waveguides, where the metal-semiconductor contact is 

used for SPP guiding and, therefore, the introduced high ohmic losses are highly undesirable. 

This problem is no less important in integrated on-chip photon and SPP sources, which are 

crucial for nanophotonic circuitry, where in-plane integrability is essential. While most of the 

other configurations suitable for the implementation of electrical pumping can emit light only 

perpendicular to the wafer [12-14] or demonstrate a dipolar behavior [15], emission parallel 

to the wafer is easily achievable in a waveguiding geometry [16,17]. 

In an active SPP waveguide, the signal propagates along the metal-semiconductor 

interface and a significant amount of the SPP field is concentrated in the metal, which 

primarily determines modal losses. At the same time, this interface should serve as a good 

ohmic contact for efficient electron or hole injection. Unfortunately, Au alloys, which form 

ohmic contacts to III-V semiconductors, can hardly compete with gold and silver in terms of 

optical losses in the infrared [18]. In addition, annealing after metal deposition drastically 

changes the contact structure via group-V elements outdiffusion, Au indiffusion and chemical 

reaction at the interface that seriously deteriorates the interface quality. In the second 

approach, apart from Ti, Ni, Cr being very absorptive materials, non-alloyed contacts require 

thick heavily doped cap semiconductor layers [9,10,19] to guarantee pure tunneling behaviour 

of the metal-semiconductor contact. These layers prevent achieving high confinement of the 

plasmonic mode to the active region of the semiconductor structure and introduce additional 

absorption losses that are especially critical, since the SPP propagation losses at the metal-

semiconductor interface exceed 103 cm-1 at telecommunication wavelengths. 

The proposed amplification scheme is based on an Au/InAsP/InGaAs/AlInAs double-

heterostructure tunneling Schottky barrier diode. The lightly doped InGaAs layer sandwiched 

between p+-AlInAs and n+-InAsP layers with the bandgap energies exceeding that of InGaAs 

acts as an active region of the semiconductor structure. Under high forward bias, electrons 

and holes are injected into InGaAs from the InAsP and AlInAs sides, respectively, while high 

potential barriers for electrons at the InGaAs/AlInAs heterojunction and for holes at the 

InAsP/InGaAs heterojunction confine the excess carriers to the active region. Gold deposited 

on top of the electron injection n+-InAsP layer is used to form an n-type ohmic contact. 

Despite the fact that the Au/n-InP Schottky barrier is as high as 0.5 eV [20], Fermi level in 

Au/InAs contacts is anomalously pinned to the conduction band of InAs [6,7] and a wide range 

of InAsP ternary alloys form contacts to gold with a quite small barrier height. In particular, 
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the height of the Au/n-InAs0.4P0.6 barrier does not exceed 0.2 eV [21,22] that combined with an 

extremely small effective mass of electrons allows these carriers to tunnel freely through the 

Schottky barrier even at moderate doping of InAs0.4P0.6 (ND
InAsP=3×1018 cm-3) (see the next 

section for details). The voltage drop across the contact does not exceed 7 mV even at a 

current density of 50 kA/cm2, which ensures nearly ideal ohmic characteristics. 

2. Ohmic contact for double-heterostructure-based metal-semiconductor 

nanolasers 

Plasmonic metals: silver and gold, – form rectifying Schottky contacts to most of direct-

bandgap semiconductors [24], which creates a significant problem for optoelectronic devices. 

The only unique binary III-V semiconductor is InAs: the Fermi level at the Au/InAs interface is 

above the conduction band edge of InAs and n-type InAs forms an ohmic contact to Au [22,23]. 

However, the bandgap energy of InAs is equal to only 0.36 eV at room temperature, therefore, 

it cannot be considered as a cladding layer of the double-heterostructure optoelectronic 

device. On the other hand, the bandgap energy of InP is 1.34 eV, but n-type InP forms a 

Schottky contact to Au with a barrier height of about 0.5 eV. In this regard, InAsxP1-x alloys are 

of a great interest, since it is possible to find a semiconductor material with a relatively large 

bandgap energy and a small barrier height, so that Au/n+-InAsxP1-x contact is ohmic (Figure S1) 

due to electron tunneling through the barrier. This gives the possibility to use the InyGa1-yAs 

alloy lattice matched to  InAsxP1-x as an active layer of the double heterostructure, while the 

InAsxP1-x layer efficiently injects electrons and blocks holes because of the large valence band 

discontinuity between InAsxP1-x and InyGa1-yAs (Figure S1). 

 

 
Figure S1. Conduction and valence band edge energies versus a lattice constant for InAsP, InGaAs 

and AlInAs ternary alloys [24]. Yellow and white circles denote the conduction and valence band 

edges of the binary semiconductors, respectively. 

 

InAs0.4P0.6 is a good candidate for a cladding layer with an ohmic contact in double-

heterostructure nanoscale optoelectronic devices. The Schottky barrier height φB at the 

interface between gold and InAs0.4P0.6 is as low as 0.15 – 0.2 eV [24,25], therefore electrons can 
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tunnel through this barrier. To calculate the tunneling and over-barrier current, we evaluate 

the barrier transmission by solving the Schrödinger equation for a parabolic potential barrier 

and calculate the electron flux [26]: 
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In the above expression, q is the electron charge, V is the bias voltage, mes is the effective 

electron mass in the semiconductor, ρmf is the density of states in the metal at the Fermi 

energy, f(E) is the Fermi distribution function, Tm→s is the barrier transmission coefficient and 
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where υf and mem are the Fermi velocity and effective electron mass in the metal, respectively. 

The barrier transmission coefficient can be expressed as follows [26] 
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Here, U(x,y) and V(x,y) are the parabolic cylinder functions, 
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where εst is the static dielectric constant of the semiconductor, ND and NA are the donor and 

acceptor concentration. 
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Figure S2. Current-voltage characteristics of the Au/n+-InAs0.4P0.6 contact for different metal-

semiconductor barrier heights φB, T = 300 K, ND–NA = 3×1018 cm-3, υf =1.4×108 cm/s, mes = 0.057me0 

[27], mem = me0, where me0 is the free-electron mass. Insert: Schematic illustration of the Schottky 

barrier. At room temperature, the barrier width is equal to 13 nm. 

 

Calculations show that the Au/n+-InAs0.4P0.6 contact exhibits a perfect ohmic behavior 

even in the case of a significantly high barrier height (φB = 0.15 – 0.2 eV) (Figure S2), the 

specific contact resistance does not exceed 1.3×10-7 Ω cm2 and does not change appreciably 

with the temperature. This provides ideal conditions for the design of coherent light and SPP 

sources operating at moderate and high current densities, since the voltage drop across the 

Au/n+-InAs0.4P0.6 contact is less than 7 mV even at a current density of 50 kA/cm2. It should be 

emphasized that such a small resistance is achieved with a moderate donor concentration of 

3×1018 cm-3. In comparison, InP with the same donor concentration forms a rectifying contact 

to gold (Figure S3). 

 
Figure S3. Current-voltage characteristics of the Au/n+-InP at room temperature, ND–

NA = 3×1018 cm-3, mes = 0.079me0 [27]. 
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3. Mode structure and spectral properties of the SPP nanolaser. 

3.1. Calculation of the dielectric function of compound semiconductors 

Relative permittivity of the medium containing a mixture of molecules of ith type, can 

be linked to their polarizabilities i  and densities iN  through the Clausius-Mossotti relation 

[28] 
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Similar expressions are derived for each of the permittivities of the uniform individual 

components: 
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where 
i

iNN . Combining the above equations, one can express the permittivity of the 

compound thorough the permittivities of the components: 

,
2

1

3

1

3

1

2

1
 










i i i

i

ii

i

i

ii N
N

N
N









     (S9) 

where NN ii   is the relative density fractions of the ith component. In the case of a binary 

compound CBA xx 1 equation (S9) is transformed into 
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This equation is used to calculate the dielectric functions of all involved compound 

semiconductors, e.g. for In0.72Ga0.28As x = 0.72, InAsAC    and GaAsBC   . The dielectric 

constants for GaAs, InAs, InP as well as their spectral dispersion are derived from the 

experimental data reported in Ref. [29], while Ref. [30] is used for AlAs. 

It should be noted that the dielectric function of the semiconductor changes noticeably 

as temperature decreases down to the cryogenic level. In order to take into account this 

phenomenon in the calculations, we employ an empirical model elaborated in Ref. [31], which 

gives the following expression for the temperature dependence of the relative permittivity: 
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Here,  TEg
 is the bandgap energy of the semiconductor, A = 13.6 eV and 

  TBBBTB 210,   , with B2=2.5×10-5 eV/K [31,32]. Introducing in the equation the 

bandgap energies of the semiconductors at the temperatures of interest (Table S1) and 

deriving the only unknown coefficients B0 and B1 by fitting the spectral dependence of the 

relative permittivity at room temperature (equation (S10)), the spectral dependences of the 

involved compound semiconductors are calculated at 77, 150 and 300 K. 

 

Table S1. Values of the bandgap energies used in the calculations of InAs0.40P0.60, In0.72Ga0.28As 

and Al0.29In0.71As [27] and temperature dependences of the semiconductor permittivities. 

 

 
Bandgap energy at different 

temperatures 
Permittivity 

 77 K 150 K 300 K  

InAs0.40P0.60 0.987 eV 0.971 eV 0.924 eV 

In0.72Ga0.28As 0.621 eV 0.604 eV 0.557 eV 

Al0.29In0.71As 1.086 eV 1.067 eV 1.000 eV 

 

 

 

 

 

 

 

 

 

3.2. Calculation of the dielectric function of gold 

Dielectric function of gold is calculated in the infrared employing the Drude model 

  ,][1)( 22

pAu  Ti  where 116 s1037.1 p  is the plasma frequency, which is 

practically temperature-independent, and          TTTTT sgep ,    is the 

temperature-dependent damping frequency, which consists of several terms, representing 

electron-phonon  Tp , electron-electron   ,e T , grain boundary  Tg , and surface 

scattering  Ts . The temperature dependence of these scattering rates was carefully 
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determined and the model was verified by the experimental data from Johnson and Christy [3] 

for the appropriate sample parameters used there in the measurements, for details see 

Ref. [33] and its supplementary information. This model is applied to calculate the dielectric 

constants of gold in the studied case (the film thickness is 100 nm, the grain size is equal to 

60 nm) for 77 K, 150 K and 300 K temperatures. 

3.3. Mode structure of the T-shaped plasmonic waveguide 

To investigate the mode structure of the T-shaped plasmonic waveguide and optimize 

its geometrical parameters with respect to the desired modal characteristics, 2D eigenmode 

finite element method (FEM) numerical simulations have been performed using COMSOL 

Multiphysics software. They reveal a family of modes of various orders having both TM and TE 

polarizations (Figure S4). The waveguide geometrical parameters defining the localization and 

propagation characteristics of the mode are optimized to give the fundamental TM00 mode 

(the mode, which will be later used as the operational mode) an advantage over all the other 

modes. The height of the waveguide is adjusted to be 1 µm. This value is large enough to 

leave the properties of the TM00 mode practically unaffected by the presence of the 

semiconductor substrate and prevent its radiation into the substrate, but small enough, so all 

other modes are extremely leaky with very shorter propagation lengths (Figure S4). The 

waveguide width w essentially determines the localization of modes in the horizontal direction 

and the mode effective index, both of them become especially important, when a ring 

resonator structure is implemented, since they eventually determine the out-of bend 

radiation losses. From this perspective, the decrease of the waveguide width down to 200 –

 400 nm particularly deteriorates characteristics of the TE photonic modes, which become 

close to the cut-off. For the TM00 mode, however, the width optimization requires careful 

balancing: the increase of the radiation losses for smaller widths is accompanied by the 

decrease of Ohmic ones, since a bigger portion of the mode becomes localized at the less 

absorptive SiO2/Au interface. To take into account all the involved effects, the 2D eigenmode 

simulations and full 3D modelling (see Section 3.4) of the ring modes in different width 

waveguides have been performed, and the optimal value for the waveguide width w = 300 nm 

was found. 
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Figure S4. (a) Cross section of the T-shaped plasmonic waveguide with the geometrical 

parameters H = 1 μm, s = 50 nm, h = 350 nm and w = 300 nm. (b) FEM simulation geometry for 

finding eigenmodes of the waveguide: perfectly matched layers are placed around the waveguide 

to absorb the leakage radiation. The dashed line marks the area presented in c. (c) Distribution of 

the electric field intensity |E|2 in a T-shaped plasmonic waveguide for TM00, TM01, TM02 and TE00 

modes at a frequency of ħω = 0.62 eV. neff and Lprop denote the effective mode index and 

propagation length, respectively. 

 

3.4. 3D eigenmode simulations of a waveguide ring resonator 

The mode structure of a ring resonator based on the T-shaped plasmonic waveguide 

(Section 3.3) is analyzed using the three-dimensional eigenmode FEM simulations (Figure S5). 

The heights of the InAs0.40P0.60 spacer and In0.72Ga0.28As active region are kept constant, while 

the waveguide width w and the ring radius R are varied to find the optimal operational optical 

mode and provide it with favorable resonance characteristics in comparison with other 

modes supported by the resonator. The ring structure is separated from the outer 

boundaries of the simulation domain by a distance large enough to ensure the absence of the 

overlap between them and the modes’ near-fields. The radiation components were efficiently 

absorbed by the perfectly matched layer, partly shown in Figure S5(a) in green. 

 



 10 

 
Figure S5. (a) Waveguide ring-resonator structure implemented in the 3D eigenmode numerical 

simulations. The field map shows the simulated distribution of the electric field perpendicular to 

the metal surface )Re( zE  at distance of 1 nm below it, for the TM8
00 mode. The part of the PML 

domain (marked in grey color) is not shown to expose the structure. (b) The dependence of the 

modal losses of the TM00 modes of various orders on their resonant wavelength for different ring 

resonators radii and waveguide widths. The points corresponding to the TM8
00 mode are marked 

with orange squares. 

 

In the ring geometry, straight-waveguide modes described in the previous section 

produce resonances (ring modes) of various orders, e.g. TM7
00, TM8

00, TM6
01, TE5

00, with specific 

frequencies (The top index in the mode notation corresponds to the number of mode periods 

along the ring and the bottom index indicates the order of the original mode in the T-shaped 

waveguide) The spectral range studied in the simulations extends from 0.5 eV (λ ≈ 2.4 µm) to 

0.9 eV (λ ≈ 1.4 µm), covering the entire amplification bandwidth of In0.72Ga0.28As (Section 4). 

For each mode, we can find the quality factor as a ratio of the energy stored in the 

resonator to the energy loss per radian of oscillation 

,
2


Q           (S12) 

and mode energy loss per centimeter 

,
2

g


            (S13) 

which is more convenient to use in a steady-state regime. Q and α are calculated using the 

complex frequency i   returned by the 3D eigenvalue solver and the group velocity 

determined from the mode dispersion, found in the designated 2D eigenmode simulations. 

In the 3D simulations, we have observed that the ring geometry provides the same 

level of loss discrimination between TM00 and TM01, TM02, and TE00 modes as it was observed 

in 2D simulations (Section 3.3). In addition to these modes, the simulations reveal other 
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families of modes (e.g., TM10 and TE02 modes), but their quality factors are negligibly small due 

to high radiation losses. On the other hand, TM00 modes of different orders show comparable 

quality factors (Figure 2(a) in the main article). For this reason, special attention should be 

paid to the choice of the operational mode for the proposed coherent SPP source on the basis 

of the modal loss and spectral position of the mode. 

It can be seen that that the modal loss as a function of the mode order (resonance 

wavelength) shows a pronounced minimum (Figure S5(b)). This is the result of a trade-off 

between two main sources of loss. At high frequencies, the electromagnetic field of the TM00 

mode is highly confined to the Au/InAsP interface, which results in high ohmic loss. At low 

frequencies, the electromagnetic field is less localized, the effective mode index decreases, 

which eventually gives rise to radiation loss. To preserve the readability of the graph, only the 

points corresponding to TM00 modes of the 8th order are marked, the orders of the other 

modes can be determined adding 1 for each step to the left and subtracting 1 for each step to 

the right on the same curve. The second observation is that the waveguide width of 300 nm is 

more advantageous than that of 250 nm due to lower modal loss (Figure S5(b)). Among the 

modes with the lowest modal loss in the spectral region 1.85 – 2.1 µm, the 8th order mode 

shows the best performance being the most close to the peak amplification wavelength 

(Section 4), while the modes of the 7th and 9th orders will be suppressed by low material gain 

at these wavelengths (Figure 2(b) in the main text). Therefore, the ring resonator design with a 

ring radius of 850 nm and a waveguide width of 300 nm is found to be optimal, in particular, 

because it ensures a subwavelength size of the device. 

 

4. Spontaneous emission and material gain of the semiconductor 

4.1. Interband transitions 

The material gain connected with interband transitions can be written as [34,35] 
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where me0 is the free-electron mass, Fn and Fp are the quasi-Fermi levels for electrons and 

holes, n  is the real part of the refractive index of the semiconductor, Mch is the average matrix 

element connecting Bloch states near the band edges of the conduction and valence bands 
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( ,12/p0ech EmM   where Ep is the Kane energy), ρc is the density of states in the conduction 

band, hh

v  and lh

v  are the densities of states in the valence band for heavy and light holes, 

respectively, finally hh-c

envM  and lh-c

envM  are the envelope matrix elements for the transitions 

between the conduction and heavy-hole (HH) bands and the conduction and light-hole (LH) 

bands, respectively. In the case of the lightly doped or undoped semiconductor, the envelope 

matrix element and the material gain can be easily calculated using the k-selection rule and 

the parabolic band approximation (Figure S6). 

 
Figure S6. Dependence of the material gain due to interband transitions hc

mat

g  on the electron and 

hole concentration in the undoped In0.72Ga0.28As for different frequencies at room temperature: (a) 

ħω = 0.576 eV, (b) ħω = 0.637 eV, (c) ħω = 0.701 eV. The following parameters are used in the 

calculations for In0.72Ga0.28As: me = 0.036me0, mhh = 0.413me0, mlh = 0.042me0 , Eg = 0.557 eV [27]. 

 

The rate of spontaneous emission in the frequency range from ħω to ħω +dħω per unit 

volume per unit time is given by 

       (S15) 

and the total spontaneous emission recombination rate is equal to 
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where Bbulk(n,p) is the bimolecular recombination coefficient, neq and peq are the equilibrium 

electron and hole concentrations, respectively. In order to use expression (S16) for the 

recombination rate in the finite difference solver, Bbulk(n,p) is fitted with the polynomial 

function of n and p (Figure S7). 
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Figure S7. Bbulk(n,p) dependence on the electron and hole concentration in the undoped 

In0.72Ga0.28As at (a) room temperature and (b) the 4th order polynomial fit of this dependence. 

4.2. Intervalence band absorption 

The split-off (SO) energy Δso in In0.72Ga0.28As is equal to 0.38 eV and the intervalence 

band absorption (IVBA) can decrease material gain in the photon energy range 0.38 – 0.7 eV, 

where transitions between HH and SO bands play a notable role and LH-HH and LH-SO 

transitions are insignificant [36]. The IVBA coefficient sohh

mat

  can be found similar to equation 

(S14). The main difference is that the average matrix element connecting Bloch states near 

the band edges of the valence and split-off bands is expressed as   72
2

sog

222

sh p
 EEkM h  

[37], where  EEmk  vhh2h  is the hole momentum. Figure S8 shows the calculated 

dependence of of sohh

mat

  on the hole concentration. 

 
Figure S8. Material gain due to band-to-band and inter valence band transitions and net material 

gain as functions of the hole concentration (the electron concentration is equal to the hole 
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concentration) at a photon energy of ħω = 0.637 eV. The split-off hole effective mass is equal to 

0.15me0 [27]. The photon energy is well above Δso and the IVBA does not significantly affect net 

material gain. 

5. Spontaneous and stimulated emission in waveguides and resonators 

5.1. Modal gain and spontaneous emission into waveguide modes 

Spontaneous emission rate spontr  at the photon energy ħω is connected with the optical 

gain g  at the same frequency through the Einstein coefficients A and B [34]. In a waveguide, 

the ratio of these two coefficients is equal to the density of modes per unit energy per unit 

waveguide length: 

 
 

 
 

,
1

g

waveguide







hh
h

h

h


B

A
       (S17) 

and the modal gain is expressed as 
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In the above expression, ρwaveguide(ħω) is the density of modes per unit energy per unit 

waveguide length, E(x,z) and W(x,z) are the distributions of the complex electric field and the 

energy density of the guided mode in the waveguide cross-section, respectively. The integral 

in the numerator of equation (S18) is taken over the active region of the waveguide. This leads 

us to the expression for the spontaneous emission into the guided mode 
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that can be written in a more compact form: 
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where 
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can be calculated in the same way as  .,,bulk

spont hpnr  

5.2. Spontaneous and stimulated emission in a resonator 

In the ring resonator, the density of modes can be written as 

    
i

i hhh 2cavity        (S22) 

where ωi are the eigenfrequencies of the ring resonator and the factor of 2 comes from two 

directions (clockwise and anticlockwise). It gives the expression for the spontaneous emission 

into the cavity mode with the eigenfrequency ωi per unit ring length per unit time 
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where L is the length of the ring resonator (L = 2πR, where R is the radius of the ring 

resonator). For convenience, we rewrite equation (S23) in the form of equation (S20) 
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where 
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Figure S9 shows the dependence of local 

spont

iR  on the electron and hole concentrations in the 

plasmonic ring resonator with a ring radius of 850 nm. It should be noted that the 

dependence of local 

spont

iR  on n and p is remarkably different from that of the spontaneous 

emission in a bulk semiconductor (equation (S16)). This can be easily seen, if one rewrites 

equation (S25) in the form of equation (S16) 

     eqeqpn

local 

spontpn

local 

spont ,)](),([, pnnppnBFpFnRFFR i

ii      (S26) 

and plot Bi(n,p) versus the electron and hole concentrations (Figure S10). The dependence of 

Bi on the carrier concentrations gives a pronounced peak, since the photons or SPP quanta 

are emitted into the resonator mode at a frequency of about 0.637 eV in contrast to the case 

of a bulk material, where the radiation spectrum is very broad (Figure 2(b) in the main text). 

 

 
Figure S9. The dependence of 

local 

spont

iR  on the electron and hole concentrations in In0.72Ga0.28As 

calculated at a frequency of 0.637 eV for a ring radius of 850 nm. 
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Figure S10. The dependence of Bi(n,p) on the electron and hole concentrations in In0.72Ga0.28As 

calculated at a frequency of 0.637 eV for a ring radius of 850 nm. 

 

5.3. Enhanced spontaneous emission and Purcell effect 

Highly localized waveguide and resonator modes can enhance spontaneous emission 

affecting the carrier recombination dynamics, and therefore the overall process of 

amplification of plasmonic modes. At the same time, the decay rate of an excited state of a 

dipolar emitter is highly dependent of the electromagnetic environment around the emitter, 

the phenomenon which is known as the Purcell effect [38]. In our case, the environment is 

quite complex, including the semiconductor channel structure, composed of the layers of 

different refractive indexes, surrounded by low-refractive index dielectrics, with a 

semiconductor substrate on one side and a metallic film on the other. This produces an 

elaborated mode structure, creating new channels in which the emitter can radiate. 

Furthermore, the presence of the metal can noticeably affect the relaxation dynamics, 

introducing a direct quenching mechanism, the phenomenon specifically featuring the 

process of amplification of SPPs [39]. 

From equations (S15), (S20) and (S21), one can obtain the Purcell factor in a waveguide 

for the guided mode at a frequency ħω: 
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where 
mode 

g

j  is the group velocity of the jth mode. Net Purcell factor at a frequency ħω is equal 

to the sum of all the Purcell factors for guided and radiation modes: 
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where Mguided is the number of guided modes at a frequency ħω and Pradiation modes is attributed 

to radiation modes. In a complex structure, Pradiation modes cannot be easily estimated, and, 

instead of calculating Pradiation modes, we use 3D eigenmode FEM numerical simulations to 

evaluate P(x,z,ħω). 

The decay rate  r  of a dipole μ  in an arbitrary electromagnetic environment is 

proportional to the power  strS r  emitted by it. The latter can be determined in a 

straightforward way if the electric field at the dipole position  rE
str

tot
 is known, including the 

electric field of the dipole itself and all the electric field components resulting from interaction 

of the emitted field with the surrounding structure [40]: 
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Then, Purcell factor can be calculated normalizing  rstrS  to the power emitted by the dipole 

placed in uniform medium unifS  (vacuum or uniform dielectric, depending on the reference): 

 
     

,
]Im[

]Im[
unif

tot

str

tot

unif

srt

unif

str

Eμ

rEμrr
r






S

S
P




      (S30) 

from where we can obtain 
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The fields involved in equation (S31) can be directly obtained from the full 3D numerical 

simulations of the radiating dipole in the required electromagnetic environment. To prove the 

validity of this approach, it was tested on the physical system of a radiating dipole near a 

Si/Air interface. The obtained Purcell factor is found to be in excellent agreement with the 

exact analytical solution which can be derived in that case [40]. 
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Figure S11. (a) Layout of the numerical simulation model of a dipole radiation inside the T-shaped 

plasmonic waveguide. The position of the dipole, marked by a red mark, was scanned across the 

active In0.72Ga0.28As region, marked by a red rectangular. (b) The Purcell factor map in the active 

In0.72Ga0.28As region of the T-shaped plasmonic waveguide derived from the numerical simulation 

results. (c) The map of the Purcel factor component originating from coupling to the TM00 

waveguide mode, calculated using equation (S27). (d) Difference between panel b and panel c. 

 

As the next step, this approach is implemented to determine the Purcell factor in the T-

shaped plasmonic waveguide. The 3D numerical simulations are performed for various dipole 

positions  dd , zx  in the In0.72Ga0.28As active region and monitoring the electric field  dd , zxE  

(Figure S11(a)). 

Then, employing equation (S30) the Purcell factor      rrr
InGaAsstr P  map in the 

active region is created (Figure S11(b)). Generally, and especially at the upper part of the 

region, the magnitude of the Purcell factor is lower than that in the uniform In0.72Ga0.28As. This 

can be explained by the fact that the waveguide width is subwavelength and, therefore, the 

Purcell factor can be expected to be in the interval between the one in uniform In0.72Ga0.28As 

 1AsGaIn 0.280.72 P  and the one in uniform SiO2 ( 4.0
AsGaInAGaInSiOSiO 0.280.72

0.280.72
22  PnnP ). On the 

other hand, the most pronounced feature of the Purcell factor distribution is its correlation 

with the intensity of the main TM00 mode, which is in agreement with what can be expected 

from equation (S27). From this formula, the Purcell factor component originating from 

coupling to TM00 waveguide mode was calculated and its map in the active region was plotted 

(Figure S11(c)). After subtraction of this component from the all-inclusive numerical result 

(Figure S11(b)), practically uniform distribution of Purcell factor was obtained (Figure S11(d)). 
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6. Self-consistent numerical simulation of the SPP nanolaser 

6.1. Electronic model 

To simulate the carrier behavior within the semiconductor, we use the two-component 

drift-diffusion model. Since the carrier flow in the structure is predominantly directed along 

the vertical z axis (Figure S12), one-dimensional electronic simulations are appropriate for the 

numerical simulation of the proposed amplification scheme and the proposed SPP nanolaer 

based on it [33,41]. In this case, the carrier transport in the steady-state regime is described 

by six first order non-linear differential equations 
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     (S32) 

where all notations have their usual meaning [42], i.e. φ is the electrostatic potential; Ez is the 

static electric field; q is the electron charge; ε is the static dielectric constant; p and n are the 

concentrations of holes and electrons, respectively; ND and NA are the donor and acceptor 

impurity concentrations; Dp and Dn, μp and μn are the diffusion coefficients and mobilities for 

holes and electrons, respectively; Jn and Jp are the electron and hole current densities; U is the 

electron-hole recombination rate that includes the stimulated emission (Ustim), spontaneous 

emission (Uspont) and non-radiative Auger (UAuger) recombination rates. These differential 

equations must be completed by 18 interface boundary conditions at 4 interfaces: three – at 

the metal-semiconductor contact (z = 0), six – at the InAsP/InGaAs heterojunction (z = s), six – 

at the InGaAs/AlInAs heterojunction (z = s+h) and three – at the back contact (z = H). 
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Figure S12. Structure of the electrically driven coherent SPP source. Subwavelength ring resonator 

of the electrically driven coherent SPP source is based on a T-shaped plasmonic waveguide. 

 

The back contact is modeled as an ideal Ohmic contact: 
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where V is the bias voltage, neq
AlInAs and peq

AlInAs are the equilibrium electron and hole 

concentrations in bulk AlInAs. 

Boundary conditions for the tunneling Schottky contact can be derived as follows. If 

the semiconductor is heavily doped, the Schottky barrier height and barrier width are small, 

carrier tunneling through the barrier dominates over other transport mechanisms and 

contact exhibits well pronounced ohmic properties as was shown in Section 2. The current 

density through the contact can be expressed as 

,
1

contact

contact

contact VJ


        (S34) 

where Vcontact is the voltage drop across the contact and ρcontact is the specific contact resistance, 

which in general is voltage dependent ρcontact(Vcontact). Accordingly, at a distance of the Schottky 

barrier thickness W, .contact0
V

zWz



  This allows us to implement proper boundary 

conditions at the tunneling Schottky contact in the drift-diffusion model by placing the actual 

boundary for the simulation domain at the distance W from the metal-semiconductor 

interface [43]. In the low resistance and heavy doping limit, the boundary conditions at the 

Au/n+-InAsP interface can be written as 
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Here ρn
contact(Jn) is the specific contact resistance attributed to electron tunneling through the 

Schottky barrier at the Au/n+-InAsP contact, which can be calculated by solving of the 

Schrödinger equation for a parabolic potential barrier (see Section 2) and neq
InAsP is the 

equilibrium electron concentrations in bulk InAsP. It is easy to see that equation (S35) can 

approximated by the ideal-ohmic-contact boundary conditions 
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as the contact resistance tends to zero. For InAsP with a donor concentration of 3×1018 cm-3, 

the specific contact resistance is less than 1.5×10-7 Ω cm2 and φ|z=W < 0.015 V at a current 

density of 100 kA/cm2 (this value is well above the operating current of the device under 

consideration). Since the voltage drop across the barrier region does not exceed kBT at room 

temperature, ideal-ohmic-contact approximation can be used. At liquid nitrogen temperature, 

qφ|z=W > 4kBT at J = 100 kA/cm2, and the boundary conditions in equation (S35) are preferred. 

In the case of the double-heterostructure tunneling Schottky barrier diode, when the 

threshold current is significantly reduced as temperature decreases, the ideal ohmic contact 

approximation gives the same result as the non-ideal contact model. In contrast to electrons, 

holes, being minority carriers in n+-InAsP, do not experience tunneling and the boundary 

conditions for them should be given in accordance with the thermionic emission theory 

[42,44]: 

),|(| 00pr0p ppqJ yz           (S37) 

where   TkFEFNp
z Bm0v2/1

InAsP

v0 /


 is the quasi-equilibrium hole concentrations at z = 0 

(F1/2 is the Fermi-Dirac integral, Fm is the Fermi level in gold, Ev|z = 0, is the valence band edge at 

z = 0, Nv
InAsP is the effective density of states in the valence band of InAsP), υpr is the effective 

recombination or collection velocity for holes at the metal-semiconductor interface. Since the 

boundary condition for holes must be given at z = W, equation (S37) is difficult to use in 

numerical simulations. If the concentration of holes (minority carriers in InAsP) is much less 

than Nv
InAsP, which is valid in the n+-layer of the double heterostructure, we can write boundary 

condition (S37) in the equivalent form at z = W [42,43]: 
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Here,  InAsP

c2/1Bn invF NnTkF
WzWz 

  and  InAsP

v2/1Bp invF NpTkF
WzWz 

  are quasi-Fermi 

levels at z = W (invF1/2(x) is the inverse Fermi-Dirac integral of order ½), Ec|z = W is the 

conduction band edge at z = W and Fm is the Fermi level in gold. Since in the Vcontact is smaller 

than kBT, the boundary condition for holes can be simplified to 
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If the hole current density is smaller than the expression before the braces in equation (S38), 

the boundary condition can also be used in the form of Fp|z=W = Fm,. 

The heterojunctions are simulated using thermionic emission boundary conditions 

[45,46]. Thus, at the InAsP/InGaAs heterojunction, we obtain 
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where mn
InAsP (mn

InGaAs) and mp
InAsP (mp

InGaAs) are the effective electron and hole masses in InAsP 

(InGaAs), εInAsP and εInGaAs are the static dielectric constants of InAsP and InGaAs, ΔEc
InAsP-InGaAs 

and ΔEv
InAsP-InGaAs = Eg

InGaAs – Eg
InAsP – ΔEc

InAsP-InGaAs are the conduction- and valence-band 

discontinuities, i.e. the differences in energy of the conduction and valence band edges in 

InAs0.4P0.6 and In0.72Ga0.28As at the heterojunction (at room temperature ΔEc
InAsP-InGaAs = –0.13 eV 

[24,47]), υnr
InAsP (υnr

InGaAs) and υpr
InAsP (υpr

InGaAs) are the effective recombination or collection 

velocities for electrons and holes in InAsP (InGaAs), which are equal to the quarter of the 

corresponding average thermal velocities in InAsP (InGaAs). Boundary conditions at the 

second (InGaAs/AlInAs) heterojunction are written in the same way. 

6.2. Optoelectronic model 

As it was discussed above, the continuity equations for electron and hole generation 

and recombination involves three processes: non-radiative Auger recombination (UAuger) and 

recombination for the spontaneous (Uspont) and stimulated (Ustim) emission. The latter two 

connect electrical and optical properties of the structure. 

Recombination rate UAuger attributed to Auger process is proportional to the third 

power of excess carrier concentration and is expressed as 

)],()()()([)]()()()([)( eqeqnpAuger zpznzpznznzCzpzCzU     (S41) 

where n and p are the electron and hole concentrations, neq and peq are the equilibrium 

electron and hole concentrations, Cn and Cp are the electron and hole Auger recombination 

coefficients. In In0.72Ga0.28As at room temperature, Cn + Cp = C = 3.8×10-28 cm6s-1 [48] and the 
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Auger recombination is mainly induced by the conduction-to-heavy-hole recombination 

accompanied by the heavy-to-split-off transitions, therefore, Cn << Cp ≈ C. 

Spontaneous emission includes emission into free space  free

spontU  and into the resonator 

modes  resonator

spontU : 

.resonator

spont

free

spontspont UUU          (S42) 

Recombination rate associated with emission into free space can be expressed as 

  )],()()()([)(),()()( eqeqbulk

s

free

free

spont zpznzpznzpznBzPzU     (S43) 

where function Bbulk(n,p) is calculated separately and fitted with the polynomial function of n 

and p (Section 5.1) and Ps
free is the normalized Purcell factor for emission into free space 

obtained from the 2D eigenmode FEM simulations 
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For each mode of the resonator (see Figure 2 in the main article), spontaneous emission rate 

Ui
spont is calculated explicitly using equations (S24, S25) and the distribution of the 

electromagnetic field of the mode in the waveguide cross-section of the ring resonator 

obtained in the 3D eigenmode simulations. The total recombination rate attributed to 

spontaneous emission into the resonator modes is equal to the sum over all modes of the 

resonator: 
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i zUzU         (S45) 

where M is the number of modes. 

Since the thickness of the InGaAs layer is only 350 nm, spontaneous emission into free 

space does not experience noticeable attenuation or amplification. The emission into 

resonator modes is directed parallel to the wafer, which provides favorable conditions for 

strong light matter interaction. Stimulated emission into the ith resonator mode can be written 

as 
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where R is the radius of the ring, gmat is the material gain calculated explicitly using 

expression (S14), ωi and Si are the frequency and power of the ith resonator mode, respectively, 

υi
E is the energy velocity of the ith resonator mode obtained in the 2D eigenmode simulations, 

Ei and Wi are the distributions of complex electric field and the energy density of the ith 
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resonator mode in the waveguide cross-section. Finally, we need to sum the stimulated 

emission over all resonator modes: 

.)()(
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stim
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


M

i

i zUzU          (S47) 

To complete the self-consistent model, six non-linear differential equations (S32) must be 

supplemented with M rate equations for M resonator modes, which can be written as follows: 

.)(spontmodal dzzUwS iiii 




  h         (S48) 

In the above equation, the modal loss of the ith resonator mode αi
modal is the sum of  

αi
S modal = –gi

S modal representing loss or gain in the semiconductor, αi
O modal attributed to the 

ohmic and radiation losses of the ring-resonator mode and αi
C modal arising from the emission 

coupling to the bus plasmonic waveguide (Figure 3(a) in the main article): 

modal Cmodal Omodal Smodal

iiii g   .       (S49) 

Here, gi
S modal can be expressed explicitly 
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where αi
O modal is taken from 3D eigenmode simulations (Section 3.4), while αi

C modal should be 

evaluated from the 3D FEM simulations. In order to do the latter, a numerical simulation 

model has been created (Figure S13(a)), in which the ring-resonator modes are excited at their 

resonant frequencies (these frequencies are found in the 3D eigenmode simulations in 

Section 3.4) using an input bus waveguide, while the output waveguide was placed on the 

opposite side of the ring (shown on the top). The field map shown in Figure S13(a) 

corresponds to the coupling of the TM8
00 mode, which is the operational mode of the 

proposed coherent SPP source (see the main article). The output monitoring distance Lmonit is 

set to be sufficiently large in order to avoid the influence of small radiation losses of the ring-

resonator mode on the output power. The power flow in the ring is probed a quarter of the 

circle before the point of the smallest separation to monitor it well beyond the region where 

the coupling is important. The coupling coefficient is then calculated with a proper correction 

for the attenuation of the mode in the ring and in the output waveguide section: 
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where 
ringI  and outI  are the power flow integrals over the InAs0.40P0.60 spacer (domain, where 

the influence of the scattered fields is minimal) at the corresponding probing positions 

(Figure S13(a)) and ring

propL  and straight

propL are the mode propagation lengths in the ring and the 

straight waveguide, respectively. 

 

 
Figure S13. (a) Schematics of the geometry for evaluation of the coupling ratio to a straight 

waveguide (on top) overlaid with the simulated distribution of electric field  zERe , when the 

TM8
00 ring-resonator mode is excited using the input bus waveguide. The edge-to-edge distance 

between the input bus waveguide and the ring resonator is equal to 150 nm and the output bus 

waveguide is separated from the resonator by a distance of d = 200 nm (b) Coupling coefficient for 

the TM8
00 mode as a function of the edge-to-edge separation distance between the ring resonator 

and the output but waveguide. (c) Coupling coefficient between the ring resonator with a radius of 

850 nm and the output bus waveguide calculated for TM00 modes of different orders. 

 

The coupling coefficient for the operational TM8
00 mode is studied as a function of the 

edge-to-edge separation distance between the ring resonator and the output bus waveguide. 

As can be expected, the coupling ratio decreases exponentially as the separation distance 

decreases (Figure S13(b)) [49]. On the basis of the results, in the design of the coherent 

plasmonic source a separation distance of 200 nm is used providing the optimal trade-off 

between the magnitude of the output signal and the inflicted "useful" cavity losses. 
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As the next step, we compare the coupling coefficients Ccoupl for TM7
00, TM8

00 and TM9
00 

modes, which compete for the gain provided by the InGaAs active medium (Figure S13(c)). 

Since the fields are extended out of the semiconductor core further for lower orders of TM00 

modes (the modes with the lower resonant frequencies), their coupling coefficient is higher at 

the fixed value of the separation distance between the ring resonator and the output bus 

waveguide. In contrast, high frequency TM9
00 and TM10

00 modes have better localization of the 

electromagnetic field and lower coupling. 

Finally, we use the coupling coefficient Ccouple to calculate the distributed coupling loss 

αC modal for each mode of the ring resonator: 
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For each resonator mode, the output power of the proposed SPP source can be found as 

  ,2exp1 modal Ccouploutput

iiiii RSCSS        (S53) 

where Ci
coupl is coupling coefficient between the ring resonator and the output bus waveguide 

for the ith resonator mode. 

 

6. Surface recombination 

Non-radiative surface recombination can make a significant contribution to the total 

current and dramatically decrease the efficiency of nanoscale electronic and optoelectronic 

devices. The influence of electron and hole trapping by defects at the interfaces on the 

characteristics of the proposed coherent SPP source is evaluated by introducing a surface 

recombination in the model in a self-consistent way. 

We treat the surface recombination rate using the Shockley-Read-Hall model [50]: 
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where n and p are the electron and hole concentrations nearby the interface, neq and peq are 

the equilibrium carrier concentration, and n1 and p1 are the equilibrium concentration of 

electron and holes, when the Fermi level at the interface coincides with the energy level of the 

trap center, Sn and Sp are the SRVs for electrons and holes, respectively, which can be also 

expressed as 

,Tnntrapn NS           (S55) 

.Tpptrapp NS           (S56) 
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Here, Ntrap is the surface density of trapping centers at the interface, σn and σp are the capture 

cross-sections for electron and holes, υTn and υTp are the thermal velocities of electrons and 

holes, respectively. Accordingly, the boundary conditions at the interfaces are changed 

appreciably. For the InAsP/InGaAs heterojunction we obtain 
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where 
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and 
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The boundary conditions at the InGaAs/AlInAs heterojunction are written in the same way. In 

the above expressions, Sn
InGaAs-InAsP and Sp

InGaAs-InAsP are the surface recombination velocities 

(SRVs) for electrons and holes in InGaAs at the InAsP/InGaAs heterojunction. Similarly, Sn
InAsP-

InGaAs and Sp
InAsP-InGaAs are the SRVs for electrons and holes in InAsP at the InAsP/InGaAs 

interface. For electrons and holes in In0.72Ga0.28As, the SRVs at the InAs0.40P0.60/In0.72Ga0.28As 

and In0.72Ga0.28As/Al0.29In0.71As heterojunctios do not exceed 2×103 cm/s [51]. In our 

simulations, we also use this value (2×103 cm/s) for recombination in InAs0.40P0.60 and 

Al0.29In0.71As, since surface recombination plays a significant role only in the active InGaAs 

region, where there are very high concentrations of excess electrons and holes. This 

guarantees that the first term in the numerator of equation (S54) is much larger than the 

second one. In contrast, the concentrations electrons and holes in InAsP and AlInAs are close 

to equilibrium values, therefore, Usurf|z=s-0 and Usurf|z=h+0 are much smaller than Usurf|z=s+0 and 
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Usurf|z=h-0 and do not have an impact on the injection current and other characteristics of the 

proposed coherent SPP source. 

Figure S15 presents the simulated distribution of electrons and holes near the 

InAsP/InGaAs and InGaAs/AlInAs interfaces at a current density of 30 kA/cm2. It is clearly seen 

that the minority carrier concentrations in InAsP and AlInAs are much smaller than the 

concentrations of majority carrier even in the regions near the heterojunction. In the active 

InGaAs layer, the electron and hole concentrations are almost equal to each other 

(Figures S15), except very thin regions near the heterojunction. It should be noted that 

concentrations in the bulk of the active layer (e.g., in the center of this layer) are typically used 

to estimate the influence of surface recombination on the device efficiency. However, 

Figure S15(c,d) demonstrates that this approach can hardly be used for quantitative 

calculations. In our structure, at current density of 30 kA/cm2, the surface recombination rate 

at the InAsP/InGaAs interface is 1×1021 cm-2s-1, it is twice as small as that calculated using the 

concentrations in the bulk of the InGaAs layer Figure S15(c). At the InGaAs/AlInAs interface, 

this effect is not well pronounced under the same injection current (Figure S15(d)). The net 

surface recombination rate is about 3.3×1021 cm-2s-1 corresponding to a current density of 

530 A/cm2, which is negligible compared with the total current J = 30 kA/cm2. 

 
Figure S15. (a,b) Simulated distribution of carrier concentration and (c,d) profiles of the Shockely-

Read-Hall rate equation  np SpSnnp   in the vicinity of (a,c) InAsP/InGaAs and (b,d) 

InGaAs/AlInAs heterojunction at a current density of 30 kA/cm2. 
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Figure S16 shows that surface recombination does not have a substantial influence on 

the output characteristics of the proposed SPP source. At a current density of 30 kA/cm2, the 

contribution of surface recombination to the total current is only 1.8%. We should emphasize 

that poor-quality interfaces can give rise to the surface density of trapping centers and 

increase the SRV up to 1×104 cm/s. Nevertheless, even in this case, the contribution of surface 

recombination will not exceed 3 kA/cm2, which is only about 10% of the total current. 

 

 
Figure S16. The dependence of (a) output power in the waveguide and (b) percentage contribution 

of different recombination processes (Auger recombination, spontaneous emission, stimulated 

emission and surface recombination) in the total current on the injection current. The current 

percentage for stimulated emission is negative below J = 8 kA/cm2 where absorption prevails over 

stimulated emission. 
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7. Coupling to photonic waveguide 

Coupling of the nanolaser output to photonic waveguides instead of plasmonic ones has a lot 

of advantages, such as compatibility with a standard photonic circuitry and low propagation 

loss. To compare the coupling efficiency from the nanolaser to the native plasmonic and Si 

photonic waveguides, eigenmode numerical simulations of the resonator coupled to an 

output bus waveguide were performed. For a fare comparison, the imaginary part of the 

eigenfrequency (related to the combined output power into the bus waveguide, ohmic, 

scattering and radiation losses) was equalised and set to the one in the lasing regime 

considered above. The parameters and position of the photonic waveguide were optimized to 

obtain the best coupling efficiency. The Si photonic waveguide has a cross-section of 400 

nm×400 nm and supports one TE and one TM mode. It was placed at an edge-to-edge 

distance of 350 nm from the nanolaser and 75 nm above the metal surface supporting the 

SPP mode (Figure S17). In the absence of a continuous plasmonic contact layer in this case, 

the nanolaser was placed on a 100 nm thick metallic island of a circular shape ( met 1.65 mR  ), 

cut below the facing edge of the photonic waveguide. The optical power coupled to the output 

Si waveguide was calculated to be about 5 times lower than in the case of a native plasmonic 

waveguide, considered in the main text. The underlying reason is the mismatch between the 

modes in the ring-resonator and the Si waveguide leading to an additional scattering loss, 

while in the case of a plasmonic waveguide they are perfectly matched, both in terms of the 

modal index and spatial distribution. Therefore, albeit of a lower efficiency, the coupling from 

the proposed nanolaser to photonic waveguides is possible and due to the advantages for the 

latter may be useful for certain applications. 

 

Figure S17.  Re E  fieldmaps (a view from the bottom) plotted at a 25 nm height above the metal 

surface for the nanolaser coupled to (a) a native plasmonic (with sizes given in Fig. 1) and (b) a 

silicon (400 nm×400 nm) waveguides obtained using the eigenmode numerical simulations. The 

scale is saturated to visualize the coupling region and the output mode profiles. 
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